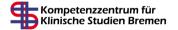
The effect of estimating prevalences on the population-wise error rate

Remi Luschei and Werner Brannath University of Bremen, Germany ADMTP Workshop, Basel 2023



The population-wise error rate (PWER, Brannath et al. 2023)

- The PWER is a type I error rate for clinical trials with multiple populations
- A multiplicity issue may occur here
- Control of the family-wise error rate may be too stringent
- The PWER is an "essential" error criterion, i.e. it only accounts for (multiple) type I errors that may affect future patients

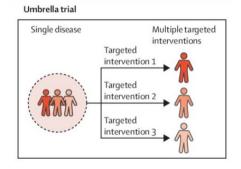
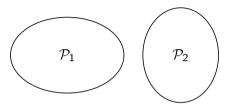


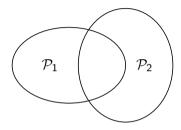
Figure: Example of a trial with multiple populations (*Park et al. 2021*)

Disjoint populations



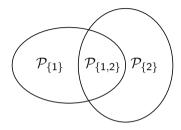
- We test the hypotheses $H_1: \theta(T_1, \mathcal{P}_1) \leq 0$ and $H_2: \theta(T_2, \mathcal{P}_2) \leq 0$
- A type I error at H_1 does not harm anyone in \mathcal{P}_2 , and vice versa
- Unadjusted testing does not increase the chance for receiving inefficient treatments
- No multiplicity adjustment required for protection of patients

Intersecting populations



- We test the hypotheses $H_1: \theta(T_1, \mathcal{P}_1) \leq 0$ and $H_2: \theta(T_2, \mathcal{P}_2) \leq 0$
- The patients in $\mathcal{P}_1 \cap \mathcal{P}_2$ could now be affected by a type I error at H_1 or H_2 .
- To bound the risk for future patients, we should account for this with some kind of multiplicity adjustment.
- The larger the intersection the more relevant is the adjustment.

Intersecting populations



• Population-wise error rate (PWER):

Probability that a randomly selected, future patient will be exposed to an inefficient treatment:

$$\begin{aligned} \mathsf{PWER} &= \pi_{\{1\}} \mathbb{P}(\mathsf{falsely reject} \ H_1) + \pi_{\{2\}} \mathbb{P}(\mathsf{falsely reject} \ H_2) \\ &+ \pi_{\{1,2\}} \mathbb{P}(\mathsf{falsely reject} \ H_1 \ \mathsf{or} \ H_2) \end{aligned}$$

General definition of the PWER

- Regard *m* patient populations *P_i* with corresponding null hypotheses *H_i* : θ_i ≤ 0, where θ_i = θ(*P_i*, *T_i*) is the efficacy of treatment *T_i* in *P_i* (in comparison to a control)
- Define the strata $\mathcal{P}_J \coloneqq (\bigcap_{j \in J} \mathcal{P}_j) \setminus (\bigcup_{k \notin J} \mathcal{P}_k), J \subseteq I = \{1, \dots, m\}$ with prevalences $\pi_J = \mathbb{P}(\mathcal{P}_J)$ among $\mathcal{P} = \bigcup_{i=1}^m \mathcal{P}_i$
- The population-wise error rate is defined by

$$\mathsf{PWER}\coloneqq \sum_{J\subseteq I}\pi_J\mathbb{P}(\mathsf{falsely reject any } H_j \text{ with } j\in J)$$

• We have $PWER \leq FWER$.

Control of the PWER

- Assume that each H_i is tested with a continuous test statistic Z_i .
- The PWER is often maximized under the global null hypothesis, for example when the Subset Pivotality assumption (*Westfall and Young 1993*) is fulfilled
- Example: Z- or t-distributed statistics for normally distributed data with homogeneous variance
- Exhaustive PWER-control is possible by computing the rejection boundary c from

$$\mathsf{PWER} = \sum_{J \subseteq I} \pi_J \mathbb{P}_I \left(\bigcup_{j \in J} \{ Z_j > c \} \right) = \alpha,$$

because the parameters of the Z-/t-distribution only depend on the sample size vector $(n_J)_{J\subseteq I}$

Estimation of the prevalences

- The prevalences $\pi = (\pi_J)_{J \subset I}$ are usually unknown
- Estimate π by the MLE $\hat{\pi}$ of the multinomial distribution $M(N, \pi)$
- Let n_J be the number of patients sampled from \mathcal{P}_J , with $\sum_{J \subseteq I} n_J = N$
- $\hat{\pi}_J = n_J/N$
- Control $\widehat{\mathsf{PWER}} = \sum_{J \subseteq I} \hat{\pi}_J \mathbb{P}\left(\cup_{j \in J} \{Z_j > \hat{c}\} \right)$
- Is the true PWER still controlled in this situation?
- Asymptotically, it is, because $\hat{\pi}$ is asymptotically consistent:

$$\mathsf{PWER} - \alpha = \sum_{J \subseteq I} (\pi_J - \hat{\pi}_J) \mathbb{P} \left(\bigcup_{j \in J} \{ Z_j > \hat{c} \} \right) \xrightarrow[N \to \infty]{a.s.} 0$$

Setup of the simulations

- Define the true π = (π_J)_{J⊆I} for populations P_j = {B_j = 1} with independent, binary biomarkers B_j (e.g. randomly generate the biomarker probabilities)
- Generate random sample sizes $(n_J)_{J \subseteq I}$
- Calculate \hat{c} from

$$\widehat{\mathsf{PWER}} = \sum_{J \subseteq I} \hat{\pi}_J \left(1 - F_{\Sigma_J}(\hat{c}, \dots, \hat{c}) \right) = \alpha.$$

• Compare the true PWER

$$\mathsf{PWER}\left(\hat{c}\right) = \sum_{J \subseteq I} \pi_J \left(1 - \mathcal{F}_{\Sigma_J}(\hat{c}, \dots, \hat{c})\right)$$

with α

Distribution of the simulated values of $PWER(\hat{c})$

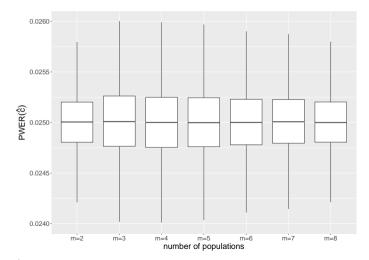


Figure: 10⁴ simulated values of PWER(\hat{c}) for $\alpha = 0.025$, N = 500 and different m

Other treated cases (with similar results)

- Random or fixed true prevalences
- Dependent or independent biomarker probabilities
- Known or unknown variances of the response
- Population-specific treatments or one single treatment to be tested in all populations

Distribution of PWER(\hat{c}) with one prevalence fixed at $\pi_J = 0.5$

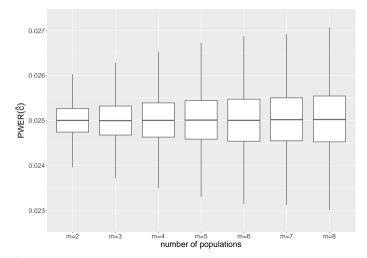


Figure: 10⁴ simulated values of PWER(\hat{c}) for $\alpha = 0.025$, N = 500 and different m

Distribution of the simulated values for different total sample sizes

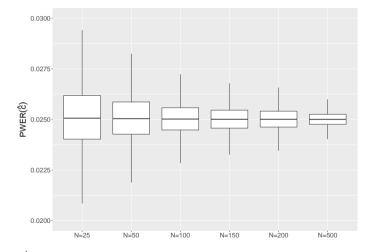


Figure: 10⁴ simulated values of PWER(\hat{c}) for α = 0.025, *m* = 3 and different *N*

The maximal strata-wise FWER

- Unter PWER-control, we are also interested in controlling the strata wise error rates $FWER_J(c) := \mathbb{P}(\max_{j \in J} Z_j > c)$
- We see in our simulations that the estimated FWER_J also approximate the true ones very well
- Brannath et al. 2023 give some upper bounds for max_{J⊆I} FWER_J(ĉ) whose quality depend on different factors like π_J or |J|

The maximal strata-wise FWER

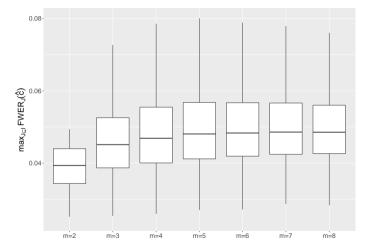


Figure: 10⁴ simulated values of max_{JCI} FWER_J(\hat{c}) for $\alpha = 0.025$, N = 500 and different m

Introduction of a minimal prevalence for neglected strata

- In case of small strata \mathcal{P}_J it could happen that no patient is recruited in \mathcal{P}_J .
- Then the PWER does not account for the multiplicity in \mathcal{P}_J .
- This is especially a problem when the strata are intersections of many different populations
- Solution: introduce a minimal prevalence π_{\min} for \mathcal{P}_J in the PWER
- In the simulations, in cases of neglected intersections of many populations, for $\pi_{\min} = 1/(2^m 1)$ we get max_J FWER_J ≤ 0.055

Introduction of a minimal prevalence for neglected strata

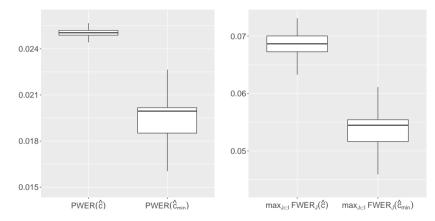


Figure: True PWER (left) and maximal strata-wise FWER (right) with and without an upscaling by π_{\min} (in a setting with m = 3 and N = 500)

Summary

- The PWER is type I error criterion adapted to clinical trials with overlapping populations
- The PWER gives the average probability of exposing a future patient to an inefficient treatment: $PWER = \sum_{J \subseteq I} \pi_J FWER_J$
- The prevalences π_J must be estimated, e.g. by MLE of multinomial distribution
- This does not cause a significant inflation of the true PWER
- Asymptotically, the true PWER is perfectly controlled
- max_J FWER_J is bounded by 2α in our simulation setting
- Introduction of π_{\min} reduces the FWER of neglected strata

References

- Brannath, Werner, Charlie Hillner, and Kornelius Rohmeyer (2023). "The population-wise error rate for clinical trials with overlapping populations". In: Statistical Methods in Medical Research 32.2, pp. 334–352.
- Park, J.J.H. et al. (2021). "Randomised trials at the level of the individual". In: The Lancet Global Health 9.5, e691–e700.
- Westfall, P. H. and S. S. Young (1993). *Resampling-based multiple testing*. *Examples and methods for p-value adjustment*. New York: Wiley.