

Faculty 03 Mathematics and Computer Science

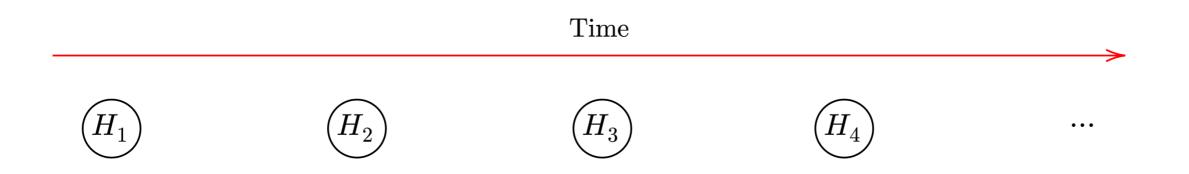
Online closed procedures

ADMTP Workshop 2023 - Basel

Lasse Fischer, Marta Bofill Roig & Werner Brannath 20.04.2023

Lasse Fischer 20.04.2023

General concepts



→ In online multiple testing we only have access to the previous hypotheses and decisions.
→ Decisions made by an online procedure cannot be reversed based on future information.

 \rightarrow Familywise error rate (FWER) is the probability of committing at least one type I error.

Lasse Fischer 20.04.2023

Motivational applications

- \rightarrow Public databases
- \rightarrow Platform trials
- → Modification of machine learning algorithms

Lasse Fischer 20.04.2023

Alpha-Spending (Foster & Stine, 2008)

 \rightarrow Weight each hypothesis H_i with a predefined γ_i such that $\sum_{i \in \mathbb{N}} \gamma_i \leq 1$.

→ Strongly controls FWER by the Bonferroni inequality.

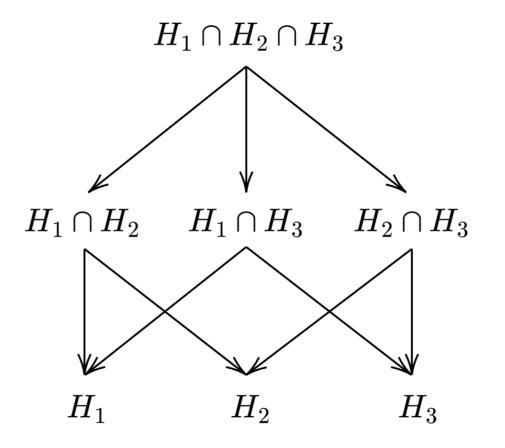
 \rightarrow As Bonferroni, generally a conservative procedure.

...

Lasse Fischer 20.04.2023

Closure Principle

- → Reject H_i , $i \in \{1, 2, 3\}$, if all $H_I = \bigcap_{i \in I} H_i$ with $I \subseteq \{1, 2, 3\}$ and $i \in I$ are rejected, each at level α .
- → Not admissible in online multiple testing!



Online intersection test

An online intersection test ϕ_I , $I \subseteq \mathbb{N}$ is based on an online multiple test $(\phi_i^I)_{i \in I}$ such that $\phi_I = 1$ if and only if $\phi_i^I = 1$ for at least one $i \in I$.

→ Restricting to online intersection tests is not sufficient to obtain online closed procedures.

Example (Alpha-Spending):

$$\phi_{\{1\}} = \begin{cases} 1, & P_1 \leq \alpha \\ 0, & \text{otherwise} \end{cases} \quad \phi_{\{1,2\}} = \begin{cases} 1, & P_1 \leq \frac{\alpha}{2} \text{ or } P_2 \leq \frac{\alpha}{2} \\ 0, & \text{otherwise} \end{cases}$$

 $\rightarrow \text{ If } \frac{\alpha}{2} < P_1 \leq \alpha \text{ and } P_2 > \frac{\alpha}{2} \implies \phi_{\{1\}} = 1 \text{ and } \phi_{\{1,2\}} = 0.$

Predictability condition

A family of online intersection tests $(\phi_I)_{I \subseteq \mathbb{N}}$ is called *predictable*, if for all $i \in \mathbb{N}$ and $I \subseteq \{1, \ldots, i\}$ holds that:

 $\phi_I = 1$ implies $\phi_K = 1$ for all $K = I \cup J$ with $J \subseteq \{j \in \mathbb{N} : j > i\}$.

→ The condition ensures that if a finite intersection hypothesis H_I , $I \subseteq \{1, \ldots, i\}$, is rejected, it remains rejected when future hypotheses H_j , j > i, are added.

Example:

 $H_1 \cap H_2$ rejected $\implies H_1 \cap H_2 \cap H_3$ rejected.

 $H_1 \cap H_3$ rejected $\implies H_1 \cap H_2 \cap H_3$ rejected.

Lasse Fischer 20.04.2023

Online Closure Principle

1. Define the closure set
$$\overline{\mathcal{H}} = \left\{ H_I = \bigcap_{i \in I} H_i : I \subseteq \mathbb{N}, H_I \neq \emptyset \right\}.$$

2. Identify an online α -level intersection test ϕ_I for each intersection hypothesis $H_I \in \overline{\mathcal{H}}$. 3. Reject H_i , if all $H_I \in \overline{\mathcal{H}}$ with $i \in I$ are rejected by its intersection test ϕ_I .

- \rightarrow Every closed procedure controls the FWER in the strong sense.
- → The resulting closed procedure is an **online procedure**, iff the family of online intersection tests $(\phi_I)_{I \subset \mathbb{N}}$ is **predictable**.

Lasse Fischer 20.04.2023

All online procedures are online closed procedures

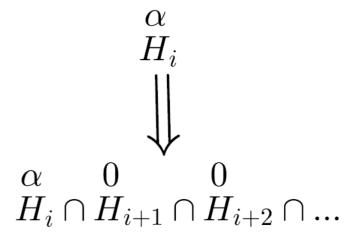
→ If Q is a strong FWER controlling online procedure, then there exists an online closed procedure Q_c such that Q and Q_c are equivalent.

Lasse Fischer 20.04.2023

Exhaustive Alpha-Spending based online closed procedures

$$\rightarrow \sum_{i \in I} \alpha_i^I = \alpha.$$

- → We end up with fixed sequence procedure: reject H_i , if $P_1 \leq \alpha, \ldots, P_i \leq \alpha$.
- → To derive Alpha-Spending based online closed procedures $\sum_{i \in I} \alpha_i^I < \alpha$ for some $I \subseteq \mathbb{N}$.



Lasse Fischer 20.04.2023

Consonance property

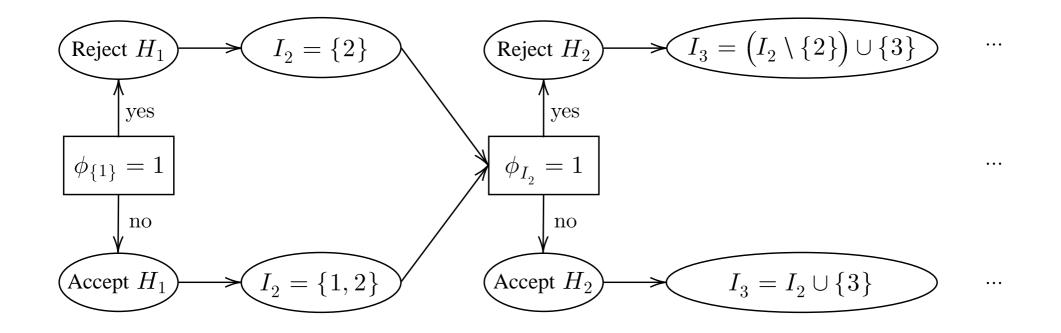
Problem: At each step $i \in \mathbb{N}$ we need to consider up to 2^{i-1} intersection hypotheses.

Solution: $(\phi_I)_{I \subseteq \mathbb{N}}$ has the **consonance property**, if $\phi_I = 1$, $I \subseteq \mathbb{N}$, implies that there exists at least one $i \in I$ such that $\phi_J = 1$ for all $J \subseteq I$ with $i \in J$.

→ If $(\phi_I)_{I \subseteq \mathbb{N}}$ is a predictable family of online intersection tests with the consonance property, only one intersection test per individual hypothesis is needed.

Lasse Fischer 20.04.2023

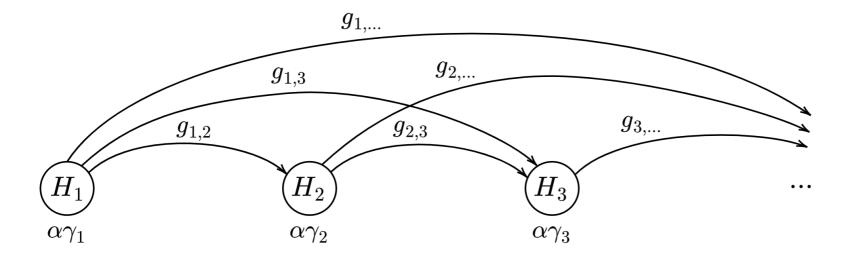
Short-cuts of online closed procedures



Lasse Fischer 20.04.2023

Online-Graph

- → Can be derived as Alpha-Spending based online closed procedure.
- \rightarrow Online version of the graphical procedure by (BRETZ ET AL., 2009).

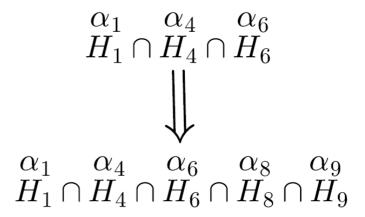


→ In contrast to the classical graphical procedure, the weights $(g_{j,i})_{j\geq 1,i>j}$ are not updated during the testing process.

Lasse Fischer 20.04.2023

Closures of existing online procedures

→ Applying the same online procedure to each intersection hypothesis ensures predictability.



- → Can often be used to construct improvements of existing FWER controlling online procedures.
- → Every weak FWER controlling online procedure (e.g. FDR procedure) defines a (new) strong FWER controlling online procedure.

Lasse Fischer 20.04.2023

Summary

- → The predictability condition ensures that the resulting closed procedure is indeed an online procedure.
- \rightarrow All FWER controlling online procedures are online closed procedures.
- \rightarrow Due to restricted information, online procedures are often conservative.
- → Short-cuts of online closed procedures are available under consonance.
- → Applying the same online procedure to every intersection hypothesis satisfies the predictability condition.

Lasse Fischer 20.04.2023

Discussion

- → When is FWER control desirable in online multiple testing?
 - \rightarrow Except for unrealistic extreme cases, the individual significance levels of FWER controlling online procedures tend to 0 for *i* to infinity ("alpha-death").
- \rightarrow In practice, the number of hypotheses is not necessarily extremely large.
- → Some problems might require FWER control (e.g. modification of machine learning algorithms).
- \rightarrow Other approaches control the error rate over some time window (FENG ET AL., 2021).
- \rightarrow The closure principle is not limited to FWER control.
 - → E.g. the closure principle can be used to construct confidence bounds on the false discovery proportion (GOEMAN & SOLARI, 2011).

Lasse Fischer 20.04.2023

References - **Thank you!**

- → Bretz, F., Maurer, W., Brannath, W. & Posch, M. (2009). A graphical approach to sequentially rejective multiple test procedures. *Statistics in Medicine*, *28*, 586–604.
- Foster, D. P. & Stine, R. A. (2008). α-Investing: A Procedure for Sequential Control of Expected False Discoveries. Journal of the Royal Statistical Society, 70(2), 429–444.
- → Fischer, L., Roig, M. B., & Brannath, W. (2022). *The online closure principle. arXiv preprint arXiv:2211.11400*.
- → Fischer, L., Roig, M. B., & Brannath, W. (2023). An adaptive-discard-graph for online error control. arXiv preprint arXiv:2301.11711.
- → Hommel, G., Bretz, F. & Maurer, W. (2007). *Powerful short-cuts for multiple testing procedures with special reference to gatekeeping strategies. Statistics in Medicine*, *26*, 4063–4073.
- → Tian, J. & Ramdas, A. (2021). Online control of the familywise error rate. Journal of Biopharmaceutical Statistics, 15, 929–942.