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Background

Multiple comparisons play an important role in drug development (FDA, 2017).

The graphical test (GT) procedures (Bretz et al., 2009; Dmitrienko et al., 2009 ) provide
an intuitive view on the process of the test and how it relates to design parameters.

In practice, an FAQ is how to determine the parameters in a GT.

We take a Bayesian approach to find the optimal GT that maximizes the expected utility
that reflects the overall utility of rejecting a set of hypotheses.

We examine technical issues often occurring when finding the optimal GT and discuss
possible solutions.

We show some examples including optimal sequence for fixed sequence tests, and
comparison of ”optimal” GT with Holm test.
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The graphical test procedure and its parameters

A GT can be represented by a directional graph with nodes representing, e.g., K
hypotheses to be tested.

It has two sets of parameters, a transition matrix G ; and a vector of relative weights
w = (w1, ...,wK ) of the hypotheses, with

∑K
k=1 wk = 1.

For a given graph, the K nodes are tested at levels w × α, where α is the overall type I
error to be controlled, and the most significant one is rejected.

An element gjk of G denotes the transition rate of α from node j to k , if j is rejected. We

also need
∑K

k=1 gjk = 1, and gll = 0, for all ls. Then, the graph is updated and tested
again for hypotheses not yet rejected until no rejection can be made.

The test is based on p-values, but we will consider the test statistics Y (a K -vector)
directly, and will assume that Y ∼ N(µ,Σ) with prior knowledge on µ,Σ.

.
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Graphic test: three hypotheses example

We take an example with K = 3 with test statistics Y ∼ N(µ,Σ) with µ = (µ1, µ2, µ3).

Local tests are based on p-values pk = 1− Φ(µk)/2, assuming Σ = diag(3).

The three hypotheses are H0k : µk = 0 vs. µk ̸= 0, k = 1, 2, 3

For K = 3, we have w = (w1,w2, 1− w1 − w2) and

G =

 0 g12 1− g12
g21 0 1− g21
g13 1− g13 0

 . (1)

Therefore, the graph parameters are (g12, g21, g31,w1,w2). In general, there are
K (K − 2) + (K − 1) parameters to determine.

We can maximize, e.g., the mean number of Hks rejected, which can be evaluated by
simulation (e.g., as implemented in gMCP).
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Test function and power

We write the whole test in terms of a vector of test function ϕ(Y ) = (ϕ1(Y ), ..., ϕK (Y )).

ϕk(Y ) = 1 if kth hypothesis is finally rejected, and ϕk(Y ) = 0 otherwise.

As it depends on G and w so we write it ϕ(Y |G ,w).

For given µ,Σ, the frequentist powers of testing the K hypotheses are

Pf (G ,w) = EY (ϕ(Y |G ,w)|µ,Σ) (2)

For GT, the form of ϕk(Y ) is not obvious, but the power can be calculated.
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Bayesian power and utility I

Suppose we have prior knowledge on µ,Σ in the form of prior distribution
µ,Σ ∼ F0(µ,Σ), where F0(.) can take different forms.

We can define a Bayesian counterpart of Pf (G ,w) as

Pb(G ,w) =

∫
EY (ϕ(Y |G ,w)|µ,Σ)dF0(µ,Σ) (3)

As Pb(G ,w) is a vector, we need a measure for the overall consequence of rejecting a set
of hypothesis.

We take the additive linear utility with u = (u1, ..., uk) (so uk is the ”value” of rejecting
H0k)

Ub(G ,w) = uTPb(G ,w) (4)

Here we use u = (1, ..., 1), will call Ub(G ,w) ”Power”, meaning expected number of
rejections.
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Bayesian power and utility II

General F0(µ,Σ) is difficult to specify. Sometimes F0(.) is a finite-mixture distribution,
µ = µl ,Σ = Σl , l = 1, ..., L. with probability Pl . With this, we can write (5) as

Ub(G ,w) =
L∑

l=1

PluTEY (ϕ(Y |G ,w)|µl ,Σl) (5)

This is the finite representation of Dirichlet process prior:
(P1, ...,PL) ∼ Dir(a0/L, ..., a0/L) where a0 > 0 is the precision parameter; and
(µl ,Σl) ∼ N(µ0, τ

2).

Beyond additive linear utility: uk may change depending on if Hj is rejected, so the the
utility of rejecting Hk and Hj are not additive.

To count for this, we need to calculate P(Reject Hj ∩ Hk) as an ”interaction” term.

Assigning a utility to this term could be difficult.
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Finding design parameters for maximizing the expected utility

With the above, we can find optimal G ,w that maximize Ub(G ,w) in principle.

Searching for them is generally difficult, as Ub(G ,w) is not a continuous function of G
and w and perhaps with multiple local maximums.

The following approaches may find approximate ones:
1 A grid approach when K is small (e.g., 3).
2 A stochastic search.
3 Approximate Ub(G ,w) with a differentiable function using, eg, deep neural network (Zhan,

2022).
4 Alternate optimizations of G and w .
5 Start with an optimal (sub-)graph.
6 Efficient optimizer for specific tasks (e.g., optimal order of hypotheses in fixed sequence tests)
7 Re-parameterization of GT parameters.
8 Sample reuse simulation.
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Optimal order of hypotheses in fixed sequence tests I

Fixed sequence tests are a much simplified method from the general closed test
procedures. But even for them, finding the optimal order of hypotheses is not easy.

Zhang et al (2015) proposed using either a greedy algorithm which is optimal when the
correlation is compound symmetry, or simulated annealing in general situations.

This problem is a special case of optimal graphic test, when all weights are given to a
single hypothesis and the transit matrix has one and only one unit element each row.

This can be considered as an integer programming problem, which may be more efficient
than simulated annealing.
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Optimal order of hypotheses in fixed sequence tests II

In practice, we often order the hypotheses according to their importance and/or individual
power, but Σ may also play an important role.

For a small number of secondary hypotheses is large, it is possible to find the exact
optimal sequence by comparing the full permutations.

Otherwise, we propose to compare only local permutations that are not too different from
the proposed order.

Using efficient sample reuse simulation algorithm (see later) make it feasible for most
practical scenarios (eg, < 10 secondary hypotheses).
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Optimal sequence and correlation matrix

An example with 8 hypotheses: equal distance
in the mean 2.64, 2.50, 2.36, 2.21, 2.07, 1.93,
1.79, 1.64, with either fixed or random Σ.

Right figure shows optimal position of each
Hk vs the order by the means in 20 simulation
with random Σ (using R function randcorr).

Right table gives Different correlation
matrices: compound symmetry and 3 random
ones .

10000 simulation runs with sample reuse.
80-90 seconds user time in R each scenario.

1 2 3 4 5 6 7 8
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8
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Optimal sequence vs sequence of descending mean

ρ Opt. Sequence Power(# Rej.)

0.0 1 2 3 4 5 6 7 8 2.058
0.3 1 2 3 4 5 6 7 8 2.616
0.6 1 2 3 4 5 6 7 8 3.256
Rand 1 1 2 3 4 7 6 8 5 2.162
Rand 2 1 2 3 4 5 6 7 8 2.187
Rand 3 1 2 3 4 6 5 7 8 2.567
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A comparison between optimal GT and Holm’s tests for 4 Hks

Bonforroni-Holm test is a GT with symmetric
graph, equal weights and transit rate.

We compare the optimal and Holm’s tests for
testing 4 hypotheses with varying µ and
correlation ρ in compound symmetry Σ.

20000 simulation runs for each scenario.

Power of both tests are given in the right
table.

The gain of optimal test varies depending on
µ and ρ, except 2nd row, in which Holm is
optimal.

These are empirical power, hence the optimal
ones may slightly over estimated.

µ ρ Power(Opt) Power(Holm)

(3,3,2,2) 0.0 2.379 2.326
(2,2,2,2)* 0.0 1.430 1.428
(3,2.5,2,1.5) 0.0 1.995 1.904
(3,2.5,2,2) 0.0 2.149 2.110
(3,2.7,2.4,2.1) 0.0 2.465 2.439
(3,3,2,2) 0.3 2.423 2.321
(3,3,2,2) 0.6 2.492 2.320
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Optimal GT for 3 hypotheses

Graphic representation of optimal GT
parameters for Σ = diag(3) and
µ = (2, 2, 2).

Holm test (all weights are 1/3) and all
non-zero elements in G are 1/2) is
optimal.

The optimal weights are close to 1/3, but

the parameters in G vary considerably.

H1:mu=2

w=0.335

H2:mu=2

w=0.321

H3:mu=2

w=0.344

0.41

0.48

0.76

0.52

0.24

0.59
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The structure and parameter of optimal GTs

Power and optimal GT parameters
for Σ = diag(3) and µ = (2, 2, 2),
20 simulation starting at Holm’s
test.

Although the differences in power is
minimum (Power of Holm is 1.194),
the optimal weights have moderate
change, while the G parameters are
quite unstable.

Power g12 g21 g31 w1 w2 w3

1.194 0.67 0.44 0.29 0.34 0.32 0.34
1.194 0.75 0.31 0.51 0.35 0.33 0.32
1.194 0.43 0.44 0.56 0.32 0.35 0.33
1.194 0.43 0.44 0.61 0.33 0.34 0.33
1.194 0.63 0.72 0.59 0.31 0.36 0.33
1.195 0.53 0.34 0.52 0.35 0.31 0.34
1.194 0.48 0.81 0.59 0.33 0.31 0.36
1.195 0.49 0.37 0.53 0.34 0.33 0.33
1.194 0.53 0.72 0.59 0.35 0.34 0.31
1.194 0.59 0.28 0.54 0.35 0.30 0.35
1.194 0.56 0.50 0.55 0.34 0.32 0.34
1.194 0.37 0.25 0.70 0.35 0.32 0.33
1.195 0.63 0.34 0.56 0.35 0.33 0.32
1.193 0.44 0.54 0.49 0.34 0.31 0.35
1.194 0.66 0.57 0.34 0.31 0.33 0.36
1.193 0.91 0.59 0.42 0.30 0.28 0.42
1.195 0.57 0.39 0.57 0.34 0.33 0.33
1.195 0.49 0.40 0.53 0.33 0.34 0.33
1.194 0.48 0.40 0.34 0.35 0.32 0.33
1.194 0.55 0.46 0.45 0.35 0.32 0.33
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The structure and parameter of optimal GTs

Power and optimal GT parameters
for Σ = diag(3) and µ = (3, 2.5, 2),
20 simulation

There is almost no differences in
power , the optimal weights have
moderate change, while the G
parameters can be quite unstable.

The less the local power, the less
stable of the gjk going out.

Starting with Holm’s test
parameters leads to very similar
power.

Power g12 g21 g31 w1 w2 w3

1.875 0.67 0.74 0.17 0.61 0.29 0.10
1.875 0.65 0.84 0.33 0.58 0.32 0.10
1.875 0.59 0.71 0.65 0.59 0.33 0.08
1.875 0.70 0.82 0.10 0.63 0.26 0.11
1.875 0.70 0.70 0.16 0.60 0.29 0.10
1.875 0.73 0.57 0.56 0.63 0.25 0.12
1.875 0.71 0.71 0.63 0.57 0.32 0.11
1.875 0.64 0.62 0.93 0.58 0.35 0.07
1.875 0.66 0.73 0.55 0.62 0.30 0.08
1.875 0.68 0.74 0.94 0.66 0.26 0.08
1.875 0.72 0.88 0.67 0.60 0.28 0.12
1.875 0.72 0.59 0.96 0.60 0.29 0.11
1.875 0.68 0.92 0.62 0.56 0.31 0.13
1.875 0.67 0.83 0.28 0.58 0.31 0.11
1.875 0.65 0.72 0.79 0.60 0.32 0.08
1.875 0.69 0.72 0.42 0.65 0.27 0.08
1.875 0.75 0.71 0.36 0.64 0.24 0.11
1.875 0.75 0.74 0.13 0.60 0.32 0.08
1.875 0.76 0.72 0.95 0.62 0.26 0.11
1.875 0.69 0.70 0.34 0.66 0.25 0.10
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Optimal GT for 4 hypotheses

Graphic representation of
optimal GT parameters for
Σ = diag(4) and
µ = (2, 2, 2, 2).

The weights are similar, but

the G matrix is rather different

from those of Holm test.

H1:mu=2

w=0.25

H2:mu=2

w=0.266

H3:mu=2

w=0.256

H4:mu=2

w=0.228

0.32

0.53

0.43

0.39

0.390.1

0.1

0.38

0.250.51 0.32

0.29
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Finite mixed prior

Often we are uncertain about the value of µ and Σ

One possibility to pass this uncertainty on to optimal tests is via finite mixture priors.

The optimal mixture GT maximizes the average power over the mixture.

Suppose we believe that the means in the 3-hypothesis case are either (3,2.5,2) or (2,2,2),
with equal chance.

The optimal mixture GT has power 1.529, while separate optimal GTs for the two µs
have power 1.875, 1.194, respectively, hence the average power is 1.535, slightly higher
than 1.529.

Suppose we have means (3,2.5,2), but with either 0 or 0.5 correlation with equal chance.

The optimal mixture GT has power 1.890, while separate optimal GTs for the two Σs
have power 1.874, 1.921, respectively, hence the average power is 1.898, slightly higher
than 1.890.
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Technical issues in optimization I

The major technical issues in finding optimal GT is the existence of discontinuous points
and local optimums in the power function.

Zhan et al. (2022) proposed to use forward deep network to fit the power function such
that the fitted model is well behaved.

Then optimal parameters can be found using efficient algorithm, eg, with gradients.

One needs to control the machine learning error, as well as the error due to local
optimums.

They also reported results by stochastic search and a genetic algorithm, all inferior than
their deep network approach.
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Reparameterization I

Parameterization of the GT parameters plays an important role.

The parameters in the GT all have linear constraints
∑K

i=1 wi ≤ 1 and
∑K

i=1 gjk ≤ 1.

Although we can consider our task as optimization with linear constraints, it is often less
efficient and stable than the proposed reparameterization.

Many software support boxed but not linear constraints.

we use a reparameterization, with a similar idea as ”stick breaking” prior in Bayesian
analysis.

For example, to get wk with
∑K

i=1 wi ≤ 1, we make a non-decreasing sequence
0 ≤ a0 ≤ a1, ...,≤ aK ≤ 1 then take wk = ak − ak−1.

Constraints
∑K

i=1 wi = aK ≤ 1 is satisfied by construction.
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Reparameterization II

To ensure monotone aks we use

ak = 1/(1 + exp(−
k∑

j=1

bj)) (6)

where bj ≥ 0, j > 1.

This reparameterization works well together with the Hooke-Jeeves algorithm for
derivative-free optimization, implemented in R-package dfoptim.

One can also find bjs given ak :

bk = log(ak/(1− ak))− log(ak−1/(1− ak−1)) (7)

This is particularly useful for specifying initial values for the optimizer, given a graph. For
example, using the Holm test graph parameters as initial values often works well.
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Sample reused simulation

To mitigate the impact of simulation error, sample reuse is a way not only to mitigate this
issue, but also reduce computing burden.

The idea is to use the same set of random samples such that the optimization procedure
is not affected by simulation error.

The following algorithm is for optimal sequence search
1 Generate n samples Y ∼ N(µ,Σ) and calculate R = I [Y > u1−α/2] (n×K matrix) with very

large n.
2 Generate permutations of sequence 1:K and delete non-local ones (too different from 1:K)

and get a set of M permutations Q1, ...,QM .
3 Repeat for each permuted sequence Qp,m = 1, ...,M calculate the ”survival function”

Sm(J) =
∏J

j=1 RQm(j), J = 1, ...,K .
4 Calculate the mean ”survival time” (number of rejections) for each Qm

5 The one with the highest survival time is the optimal sequence.

Can be fully vectorized in R-code, and is quicker than calcPower(.).
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Discussion and further work

Do we really need to use optimal GT? Probably not always, but it is a useful reference.

Commonly used methods such as the Holm test are reasonably powerful for a wide range
of setting, but it is still worthwhile to check.

The structure of optimal GT is not stable, but the power is.

Careful use of derivative-free approaches in combination with other tricks such as
reparameterization provides feasible practical approaches, but more technical advance is
still useful.

Eliciting information for µ and Σ or the finite mixture prior is a practical challenge.

Some of our approaches can be extended to optimal weighted tests (eg, Westfall &
Krishen, 2001).
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