Sample size recalculation for a skewed outcome in two-stage three-arm sequential noninferiority clinical trials: a simulation study

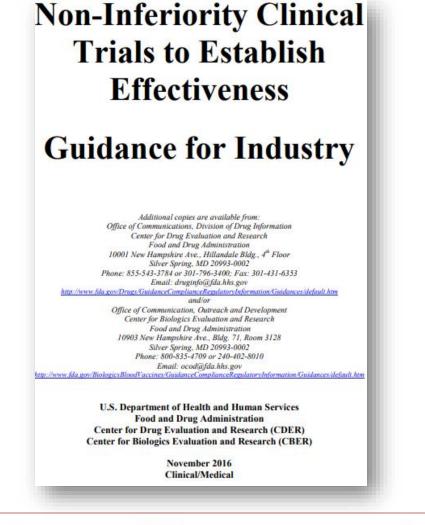
Maria Vittoria Chiaruttini, Ph.D Candidate in Biostatistics

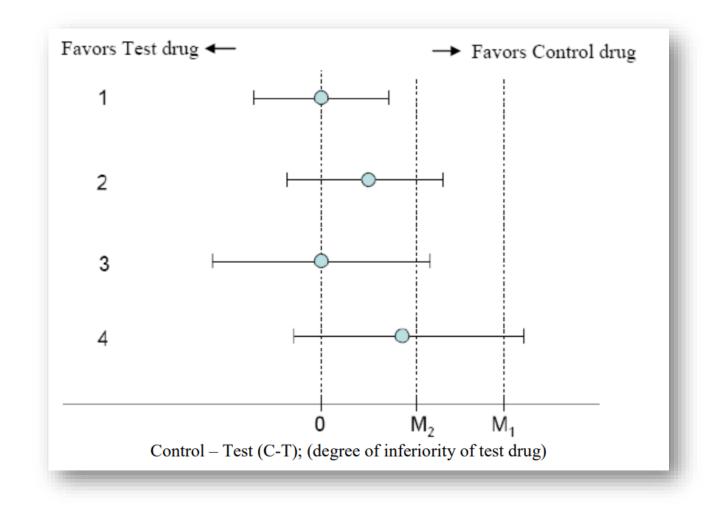
University of Padua, Italy

Workshop on Adaptive Designs and Multiple Testing Procedures 19-21 April 2023 - Novartis Campus, Basel

Background

- Non-inferiority clinical trial & FDA guidelines •
- The base-point of this study: the Lanyu Lei resampling (original) algorithm
- The skewed outcomes in clinical research


Non-inferiority clinical trial & FDA guidelines (1)



Non-inferiority clinical trial & FDA guidelines (2)

UNIVERSITÀ

DEGLI STUDI DI PADOVA

Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

Non-inferiority clinical trial & FDA guidelines (3)

Non-Inferiority Clinical Trials to Establish Effectiveness

Guidance for Industry

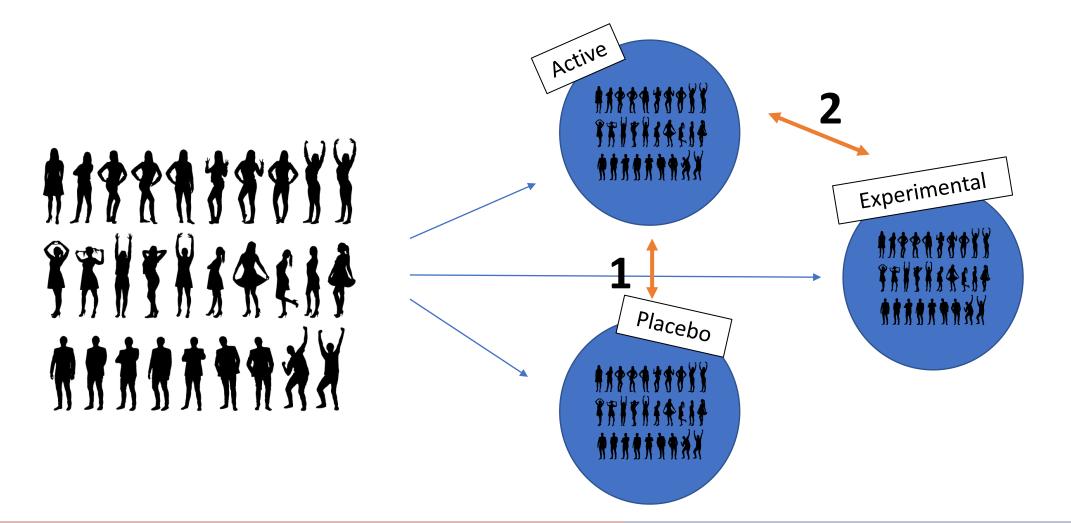
Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: druginfo@fda.hhs.gov //www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Office of Communication, Outreach and Development Center for Biologics Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg, 71, Room 3128 Silver Spring, MD 20993-0002 Phone: 800-835-4709 or 240-402-8010 Email: ocod@fda.hhs.gov ttp://www.fda.gov/BiologicsBl

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER)

> > November 2016 Clinical/Medical

- Constancy → The demonstrated effect of the active control over placebo in the historical trial has not changed over time
- Assay sensitivity → The study's ability to distinguish an effective treatment from a less effective or an ineffective one

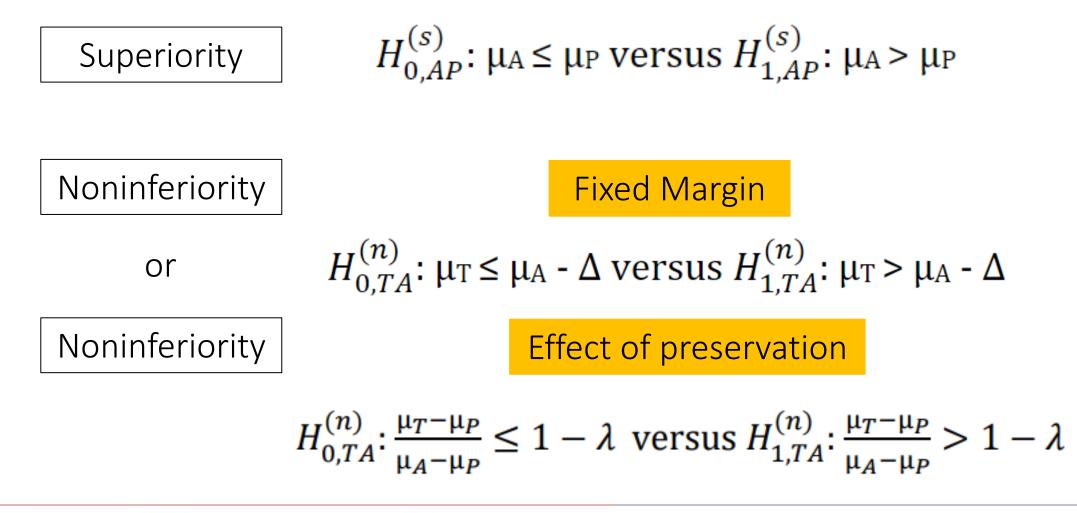
This assumptions are not testable in a trial without a concurrent placebo group



JNIVERSITÀ DEGLI STUDI DI PADOVA

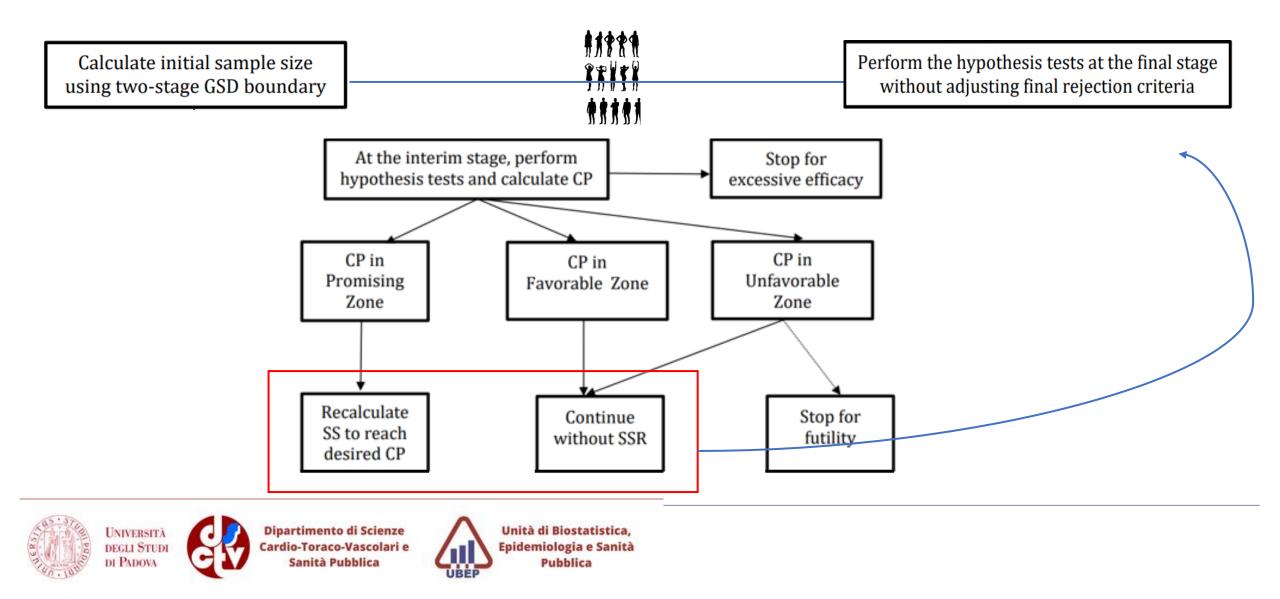
Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

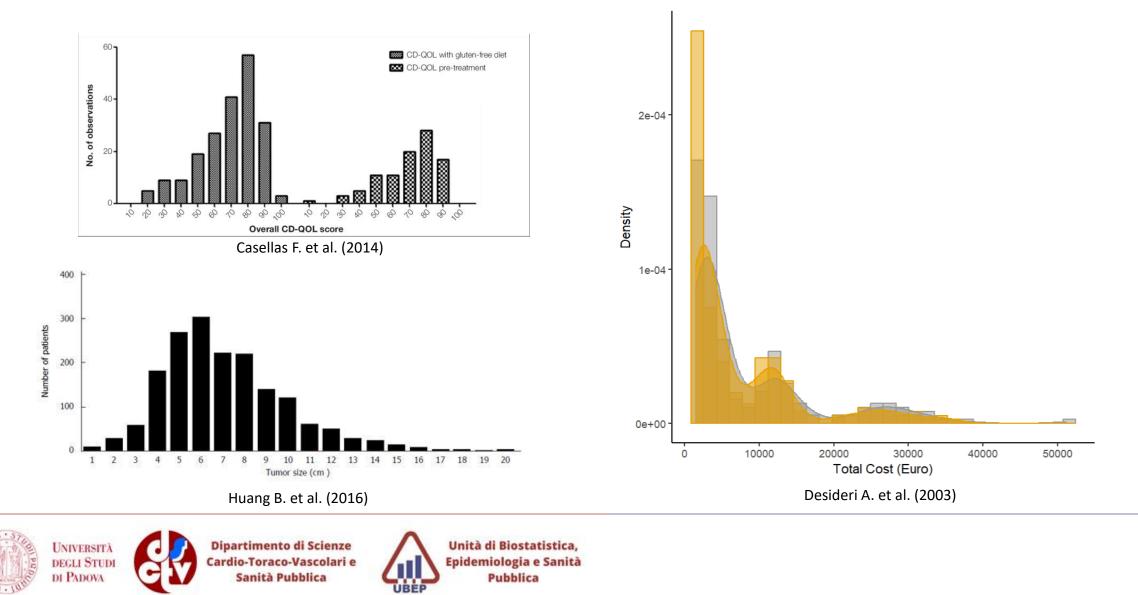
Non-inferiority clinical trial & FDA guidelines (4)



Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

Non-inferiority clinical trial & FDA guidelines (5)




Dipartimento di So Cardio-Toraco-Vasc Sanità Pubblic

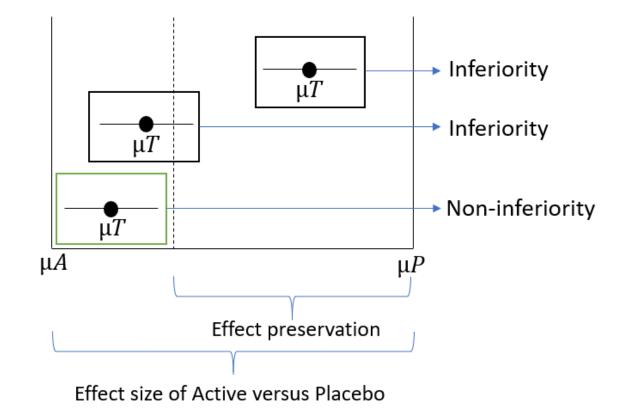
The base-point of this study: the Lanyu Lei resampling algorithm A group sequential design based on the promising zone of conditional power (1)

The skewed outcomes in clinical research

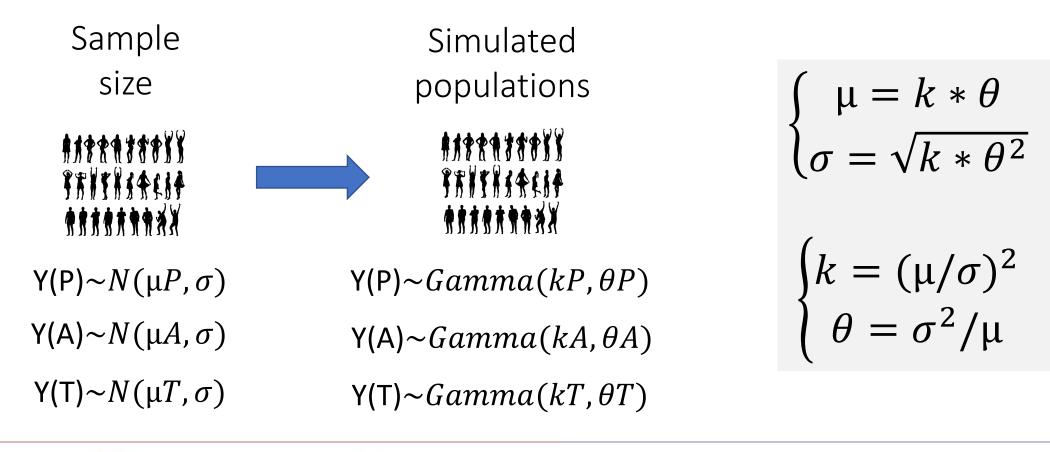
• The Coverage probability of the original sample size re-calculation

method in the presence of deviation from normality

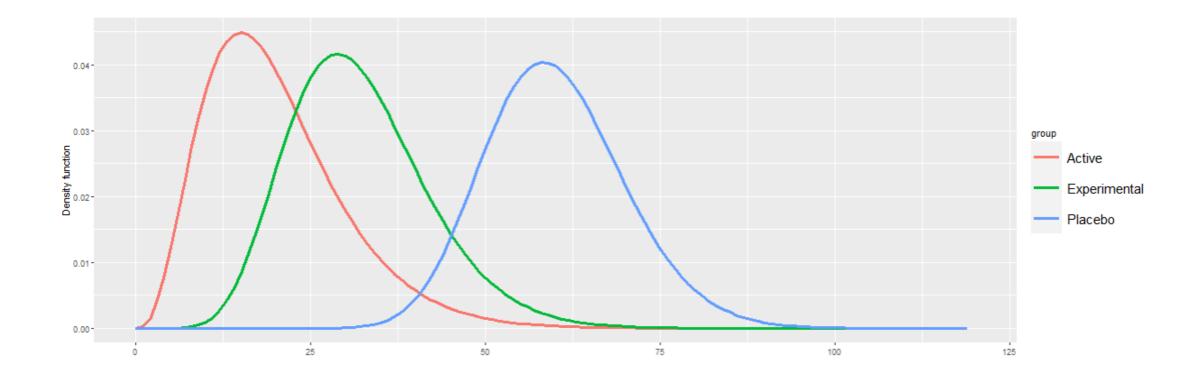
- The proposed algorithm for skewed outcomes
- A real-data example
- A brief presentation of the r-shiny web application

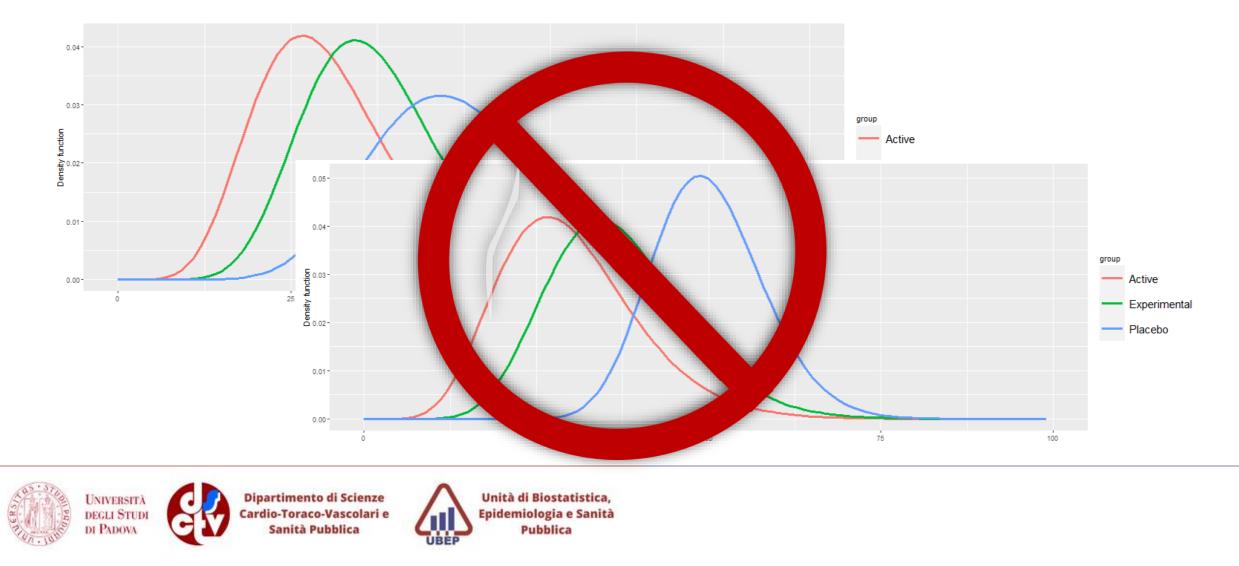


COVERAGE PROBABILITY:


The total number of rejected nulls over the total number of simulations (N=10,000), under the alternative hypothesis, that in case

of "smaller is better" is:




Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

The proposed algorithm for skewed outcomes (1)

The power function used to estimate the initial sample size

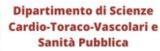
$$1 - \beta = \phi \left(\frac{\mu T - (1 - \lambda)\mu A - \lambda\mu P)}{\frac{\sigma}{\sqrt{nT}} \sqrt{1 + \frac{(1 - \lambda)^2}{cA} + \frac{\lambda^2}{cP}}} - Z_{1 - \alpha(2)} \right)$$

$$1 - \beta = \phi \left(\frac{\mu T - (1 - \lambda)\mu A - \lambda\mu P)}{\sqrt{\frac{Var(T)}{nT} + \frac{(1 - \lambda)^2 * Var(A)}{nT * cA} + \frac{\lambda^2 Var(P)}{nT * cP}} - t_{1 - \alpha(2), \nu} \right)$$

The proposed algorithm for skewed outcomes (2)

The test statistics for $H_{1, AP} = \mu A < \mu P$:

$$Z_{PA} = \frac{\mu P - \mu A}{\sigma \sqrt{\frac{1}{nT * cA} + \frac{1}{nT * cP}}}$$
$$T_{PA} = \frac{\mu P - \mu A}{\sqrt{\frac{Var(A)}{nT * cA} + \frac{Var(P)}{nT * cP}}}$$


The proposed algorithm for skewed outcomes (3)

• The test statistics for $H_{1, TA} = \frac{(\mu P - \mu T)}{(\mu P - \mu A)} > 1 - \lambda$:

$$Z_{TA} = \frac{(1-\lambda)\mu A + \lambda\mu P - \mu T}{\frac{\sigma}{\sqrt{nT}}\sqrt{1 + \frac{(1-\lambda)^2}{cA} + \frac{\lambda^2}{cP}}}$$

$$T_{TA} = \frac{(1-\lambda)\mu A + \lambda\mu P - \mu T}{\sqrt{\frac{Var(T)}{nT} + \frac{(1-\lambda)^2 * Var(A)}{nT * cA} + \frac{\lambda^2 Var(P)}{nT * cP}}}$$

The proposed algorithm for skewed outcomes (4)

The conditional power function:

$$CondP = 1 - \phi \left(\frac{Z_{1-\alpha(2)}\sqrt{nT(2)} - Z_{TA}(1)\sqrt{nT(1)}}{\sqrt{nT(2) - nT(1)}} - \frac{(1-\lambda)\mu A + \lambda\mu P - \mu T}{\frac{\sigma}{\sqrt{nT(2) - nT(1)}}\sqrt{1 + \frac{(1-\lambda)^2}{cA} + \frac{\lambda^2}{cP}}} \right)$$

$$CondP = 1 - \phi \left(\frac{t_{1-\alpha(2),\nu} \sqrt{nT(2)} - T_{TA}(1)\sqrt{nT(1)}}{\sqrt{nT(2)} - nT(1)} - \frac{(1-\lambda)\mu A + \lambda\mu P - \mu T}{\sqrt{\frac{Var(T)}{nT(2) - nT(1)} + \frac{(1-\lambda)^2 * Var(A)}{(nT(2) - nT(1)) * cA} + \frac{\lambda^2 Var(P)}{(nT(2) - nT(1)) * cP}} \right)$$

A real data example (1)

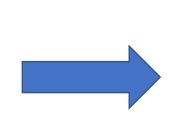
European Heart Journal (2003) 24, 1630-1639

Cost of strategies after myocardial infarction (COSTAMI)

A multicentre, international, randomized trial for cost-effective discharge after uncomplicated myocardial infarction

Alessandro Desideri^a*, Paolo Maria Fioretti^b, Lauro Cortigiani^c, Dario Gregori^d, Claudio Coletta^e, Carlo Vigna^f, Francesco Tota^g, Riccardo Rambaldi^h, Jeroen Baxⁱ, Leopoldo Celegon^j, Riccardo Bigi^k, Eugenio Picano¹, on behalf of the COSTAMI (Cost of Strategies After Myocardial Infarction) Trial Investigators

UNIVE DEGLI DI PAI



A real data example (2)

Groups	Total cost				
	Mean	Standard Deviation			
Usual Care Strategy= Placebo/control group	8344	8894			
Early Discharge=active comparator group	7391	7903			

$$\mu P - \mu A = \pounds 953$$
$$1 - \lambda = 0.5$$

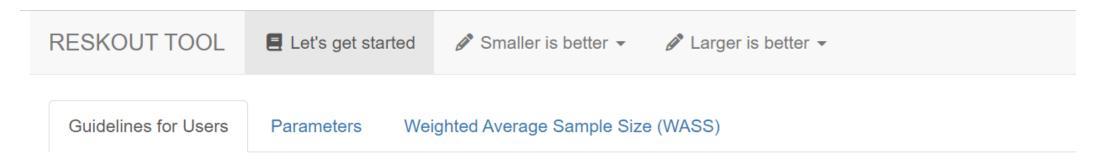
 $\mu P - \mu T > 953*0.5 = \notin 476.5$

μ*T* < 8344 -476.5=7867.5

UNIVERSITÀ DEGLI STUDI DI PADOVA

A real data example (3)

Groups	Tota	cost
	Mean	Standard Deviation
Usual Care Strategy= control group	8344	8894
Early Discharge=active comparator group	7391	7903
New strategy= experimental group	7666	7488



Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

A brief presentation of the r-shiny web application

Resampling algorithm for SKewed OUTcome

Sample size re-calculation for a skewed outcome in two-stage three-arm sequential noninferiority clinical trials: a simulation study

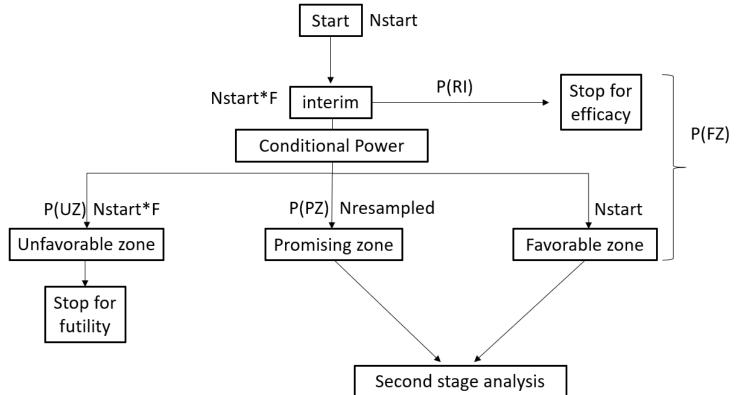

https://r-ubesp.dctv.unipd.it/shiny/reskout/

Diagram of the resampling algorithm & the weighted average sample size (WASS)

(Nstart * F) * P(RI) + Nstart * (P(FZ) - P(RI)) + (Nstart * F) * P(UZ) + Nresampled * P(PZ)

- Comparison between study designs under diverse hypothesis settings
- Study design by original and proposed algorithm by the real-data example

Comparison between study designs under diverse hypothesis (1)

	nates SD=SDP		Estimates under SDP>SDA by the proposed method								
0	%	10	10% 20% 30% 40% 50				%				
Ν	Nr	N	Nr	Ν	Nr	Ν	Nr	Ν	Nr	Ν	Nr
172	189	150	166	128	142	110	122	97	109	86	97
СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)
0.84	0.2	<u>0.84</u>	<u>0.17</u>	<u>0.85</u>	<u>0.16</u>	<u>0.85</u>	<u>0.16</u>	<u>0.85</u>	<u>0.14</u>	<u>0.85</u>	<u>0.13</u>

Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

Comparison between study designs under diverse hypothesis (2)

Cample size	CP and P(RI) assuming SD=SDP when SDA>SDP										
Sample size assuming	10%		20%		30%		40%		50%		
SD=SDP	СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)	
172	<u>0.77</u>	<u>0.12</u>	<u>0.72</u>	<u>0.09</u>	<u>0.66</u>	<u>0.06</u>	<u>0.62</u>	<u>0.05</u>	<u>0.56</u>	<u>0.03</u>	

Comparison between study designs under diverse hypothesis (3)

Estimates assuming SD=pooled SD when SDA>SDP									
10)%	20%		30%		40%		50%	
N	Nr	Ν	Nr	N	Nr	Ν	Nr	N	Nr
190	215	209	238	228	264	248	287	269	313
СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)
<u>0.8</u>	<u>0.15</u>	<u>0.78</u>	<u>0.14</u>	<u>0.77</u>	<u>0.13</u>	<u>0.74</u>	<u>0.13</u>	<u>0.72</u>	<u>0.11</u>

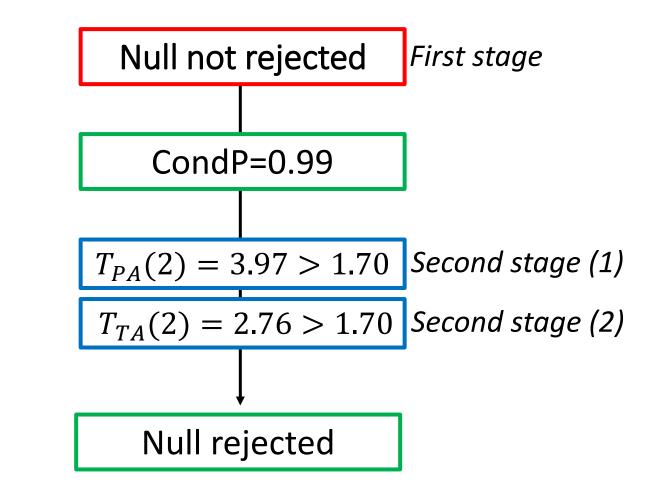
Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

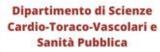
Comparison between study designs under diverse hypothesis (4)

	Estimates assuming SDA>SDP when SDA>SDP										
10)%	20	20% 30% 40%						50%		
Ν	Nr	N	Nr	N	Nr	N	Nr	N	Nr		
214	232	252	278	294	321	339	370	388	421		
СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)	СР	P(RI)		
<u>0.85</u>	<u>0.19</u>	<u>0.84</u>	<u>0.19</u>	<u>0.85</u>	<u>0.21</u>	<u>0.85</u>	<u>0.22</u>	<u>0.85</u>	<u>0.21</u>		

Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

The real-data example (1)


Labels	original	proposed	Difference (proposed - original)
Initial sample size	3276	2730	-546
Coverage Probability	0.876	0.811	-0.065
Average resampled sample size	3628	3191	-437
Probability to reject H0 at interim	0.112	0.062	-0.05
Probability to fall in unfavorable zone	0.164	0.206	0.042
Probability to fall in promising zone	0.209	0.231	0.022
Probability to fall in favorable zone	0.627	0.563	-0.064
WASS	2897	2471	-427


Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

The real-data example (2)

Conclusions

- Take home messages
- Tutorial for the r-shiny web application

Take home message (1)

To our knowledge, no one has developed a parametrical multiple testing procedure to estimate the sample size for a three-arm noninferiority study with interim analysis for skewed/gamma distributed outcomes

We have used a **simulation approach** to empirically understand the **properties** of the statistical test under **deviation from normality**

Dipartimento di Scienze Cardio-Toraco-Vascolari Sanità Pubblica

Take home message (2)

The first result was that **the original method**, **even under the assumption of non-normality**, **does not lose statistical power**, **assuming** the **variance** of the three groups is **equal** or very similar

We found that **if the discrepancy between the variances of the groups is considered**, using the proposed algorithm, we can estimate an initial sample size to achieve the desired power, **avoiding** the risk of **overestimation (saving patients)** or **underestimation (saving power)**, even in case of deviation from normality

Dipartimento di Scienze Cardio-Toraco-Vascolari Sanità Pubblica

Tutorial for the r-shiny web application

Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

Thank you very much for the attention !

Do you have any question?

Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica

The base-point of this study: the Lanyu Lei sample size algorithm A group sequential design based on the promising zone of conditional power (2)

Fraction of sample size at Lower bound of promising **n**max (folds of original n) interim look ($n^{(1)}/n^{(2)}$) zone 0.5 36% 2 2 0.75 33% 0.5 31% 4 0.75 30% 4 0.5 31% 8 0.75 30% 00


Table 4. The threshold of promising zones for the three-arm non-inferiority test in the two-stage SSR designs

Note: The lower bounds were calculated for nominal initial power of 80%.

Comparison between study designs under diverse hypothesis (5)

Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica