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Covariate Adjustment

In many clinical trials, data is collected on different patient
characteristics at the time of entry

e.g., age, baseline severity and comorbidities

Covariate adjustment is a statistical analysis method with
high potential to improve precision for many of these trials.

Pre-planned adjustment for baseline variables when
estimating average treatment effect.

Estimand is same as when using unadjusted estimator (e.g.,
difference in means).

Goal: avoid making any model assumptions beyond what’s
assumed for unadjusted estimator (robustness to model
misspecification).

(e.g., Koch et al., 1998; Yang and Tsiatis, 2001; Rubin and van der Laan, 2008;
Tsiatis et al., 2008; Moore and van der Laan, 2009b,a; Zhang, 2015; Jiang
et al., 2018; Benkeser et al., 2020)
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FDA Guidance: Example

Primary endpoint Y : binary.

Estimand: θ = E (Y |A = 1)− E (Y |A = 0).

Estimator: G-computation/Standardization

1 Fit logistic regression model for

P(Y = 1|A,W ) = logit−1(γ0 + γ1A+ γ2W ).

2 Compute standardized estimators for treatment specific means

Ê (Y |A = 1) = 1
n

∑n
i=1 logit

−1(γ̂0 + γ̂1 + γ̂2Wi )

Ê (Y |A = 0) = 1
n

∑n
i=1 logit

−1(γ̂0 + γ̂2Wi )

3 Calculate θ̂ = Ê (Y |A = 1)− Ê (Y |A = 0)
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Problem Setting

Despite extensive literature and recommendations by
regulators such as FDA and EMA, it remains highly
underutilized.

Problematic:

Resulting analyses are inefficient by not fully exploiting the
available information in the data,

thereby forfeiting the opportunity to reduce the required
sample size.
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Potential Obstacles Leading to Underutilization

1 Many covariate adjustment methods are incompatible with
‘standard’ group sequential designs (GSDs).

GSDs can reduce the length of a Phase 3 trial.

An obstacle for realizing precision gains from covariate
adjustment as GSDs are commonly used for efficiency and
ethical reasons.

2 The uncertainty at the design stage about the amount of
precision gain and corresponding sample size reduction.

An incorrect projection of a covariate’s prognostic value risks
an over- or underpowered future trial.
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Group Sequential Designs

Entail analyzing the data at K different times t1, . . . , tK .

Baseline covariates

Long-term endpoint

Calendar Time

Start Recruitment
Interim

Analysis 1

t1

Interim
Analysis 2

t2

Final
Analysis

t3
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Standardization Estimator at Interim Analyses

Primary endpoint: binary.

Estimand: θ = E (Y |A = 1)− E (Y |A = 0).

Estimator: Standardization/G-computation

At time tk :

1 Fit logistic regression model for

P(Y = 1|A,W ) = logit−1(γ0 + γ1A+ γ2W ),

in participants with complete follow up.

2 Compute standardized estimators for treatment specific means

Êtk (Y |A = 1) = 1
n′
∑n′

i=1 logit
−1(γ̂0 + γ̂1 + γ̂2Wi )

Êtk (Y |A = 0) = 1
n′
∑n′

i=1 logit
−1(γ̂0 + γ̂2Wi )

in all n′ recruited patients.

3 Calculate θ̂tk = Êtk (Y |A = 1)− Êtk (Y |A = 0)

9 / 25



Standardization Estimator at Interim Analyses

Primary endpoint: binary.

Estimand: θ = E (Y |A = 1)− E (Y |A = 0).

Estimator: Standardization/G-computation

At time tk :

1 Fit logistic regression model for

P(Y = 1|A,W ) = logit−1(γ0 + γ1A+ γ2W ),

in participants with complete follow up.

2 Compute standardized estimators for treatment specific means
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Group Sequential Designs

Entail analyzing the data at K different times t1, . . . , tK .

At each analysis time tk :

Calculate an estimate θ̂tk .

Calculate a standardized test statistic Zk = Z (tk) =
θ̂tk−θ0

ŝe(θ̂tk )
.

Compare the Zk to some critical value for that analysis.

Allow to stop early for efficacy and/or futility.

Multiple looks at accumulating data increase type I error

Range of methods for defining the critical values for interim
analyses.
(Pocock, 1977; O’Brien and Fleming, 1979; Lan and DeMets, 1983)
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Group Sequential Designs: Independent Increments

Independent increments property: θ̂tk being asymptotically

independent of all previous increments θ̂tk − θ̂tk′ for all k
′ < k .

Baseline covariates

Long-term endpoint

Calendar Time

Start Recruitment
Interim

Analysis 1
Interim

Analysis 2
Final

Analysis
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Group Sequential Designs: Independent Increments

This property holds for efficient estimators.
ANCOVA with correctly specified model

G-computation and TMLE (if working models are correctly specified)

. . .

Unfortunately, a sequence of RAL estimators (θ̂t1 , . . . , θ̂tK )
does not necessarily have this property.

e.g., G-computation and TMLE estimators when working models are

misspecified

(e.g., Scharfstein et al., 1997; Jennison and Turnbull, 1997; Kim and Tsiatis,

2020; Rosenblum et al., 2015; Shoben and Emerson, 2014)

Proposal: modifying any RAL estimator so that it has the
independent increments property.

12 / 25



Group Sequential Designs: Independent Increments

This property holds for efficient estimators.
ANCOVA with correctly specified model

G-computation and TMLE (if working models are correctly specified)

. . .

Unfortunately, a sequence of RAL estimators (θ̂t1 , . . . , θ̂tK )
does not necessarily have this property.

e.g., G-computation and TMLE estimators when working models are

misspecified

(e.g., Scharfstein et al., 1997; Jennison and Turnbull, 1997; Kim and Tsiatis,

2020; Rosenblum et al., 2015; Shoben and Emerson, 2014)

Proposal: modifying any RAL estimator so that it has the
independent increments property.

12 / 25



Group Sequential Designs: Independent Increments

This property holds for efficient estimators.
ANCOVA with correctly specified model

G-computation and TMLE (if working models are correctly specified)

. . .

Unfortunately, a sequence of RAL estimators (θ̂t1 , . . . , θ̂tK )
does not necessarily have this property.

e.g., G-computation and TMLE estimators when working models are

misspecified

(e.g., Scharfstein et al., 1997; Jennison and Turnbull, 1997; Kim and Tsiatis,

2020; Rosenblum et al., 2015; Shoben and Emerson, 2014)

Proposal: modifying any RAL estimator so that it has the
independent increments property.

12 / 25



Proposal: Motivation

Goal: Obtain at each analysis time tk an estimator θ̃tk that

1 is consistent for θ,

2 is asymptotically linear,

3 is asymptotically normal,

4 is asymptotically as or more precise as the original estimator
θ̂tk , and

5 has the independent increments property.

We will focus on finding the linear combination

θ̂tk −
k−1∑
k ′=1

λ
(k)
k ′ (θ̂tk − θ̂tk′ )

with minimal variance.
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Proposal

At k = 1, we let θ̃t1 = θ̂t1 and Z̃1 = Z1 =
θ̂t1−θ0

ŝe(θ̂t1 )
.

At each subsequent analysis k ≥ 2:

1 Calculate θ̂tk and estimate the covariance matrix of

(θ̂t1 , . . . , θ̂tk ).

2 Solve(
λ̂
(k)
1 , . . . , λ̂

(k)
k−1

)
= arg min

(λ
(k)
1 ,...,λ

(k)
k−1

)∈Rk−1

V̂ar{θ̂tk−
k−1∑
k′=1

λ
(k)
k′ (θ̂tk−θ̂tk′ )},

3 Calculate θ̃tk = θ̂tk −
∑k−1

k′=1 λ̂
(k)
k′ (θ̂tk − θ̂tk′ ), with

λ̂
(k) =

{
V̂ar

(
(θ̂tk − θ̂t1 , . . . , θ̂tk − θ̂tk−1

)t
)}−1

·Ĉov
(
θ̂tk , (θ̂tk − θ̂t1 , . . . , θ̂tk − θ̂tk−1

)t
)

4 Calculate Z̃k =
θ̃tk−θ0

ŝe(θ̃tk )
.
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·Ĉov
(
θ̂tk , (θ̂tk − θ̂t1 , . . . , θ̂tk − θ̂tk−1

)t
)

4 Calculate Z̃k =
θ̃tk−θ0
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ŝe(θ̃tk )
.

14 / 25



Outline

1 Background

2 Proposal: Combining Covariate Adjustment and GSDs

3 Proposal: Combining Covariate Adjustment and
Information-Adaptive Designs

4 Simulation Study

5 Discussion

15 / 25



Algorithm for Analysis Timing: Design Stage

Specify the operating characteristics of the study

We compute the maximum/total information needed to
preserve these operational characteristics(

zα/2 + zβ

θA − θ0

)2

,

for a fixed design (no interim analyses), and(
zα/2 + zβ

θA − θ0

)2

IF

when data is sequentially monitored with the possibility of
early stopping.

(Mehta and Tsiatis, 2001)
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Algorithm for Analysis Timing: Information

We propose to monitor the accrued information,
(ŝe(θ̂t))

−2, through time t.

We consider a trial with an interim analysis when 50% of the
information is available:

We conduct the interim analysis at time t1 when

(ŝe(θ̂t1))
−2 ≥ 0.5 ·

(
zα/2 + zβ

θA − θ0

)2

IF .

We conduct the final analysis at time t2 when

(ŝe(θ̂t2))
−2 ≥

(
zα/2 + zβ

θA − θ0

)2

IF .

(Mehta and Tsiatis, 2001; Zhang, 2009)
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MISTIE III trial (Stroke)

Functional outcome: proportion of patients who achieved a
modified Rankin Scale score of 0-3 at 365 days (binary).

Estimand of interest: risk difference.

Total sample size of approximately 498 patients (in original
trial):

1:1 randomization

Power of 88% to detect an average effect size of 13% at a 5%
significance level

Success rate: 25% in standard medical care group versus 38%
in MISTIE group

We will focus on information instead of sample size!
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Simulation Study: K = 2

We perform interim analysis when 50% of the (total)
information is available

Total information: 648

θ = 0.13 (Alternative)
Power ASN AAT

Original estimators θ̂tk Unadjusted 88.3% 534 1566
Standardization 87.1% 431 1299

Orthogonalized estimators θ̃tk Standardization 87.0% 431 1299

ASN: average sample number; AAT: average analysis time (days).

Note: We did a small sample size correction for standardization estimator.

Conclusion under alternative:
19% reduction of sample size due to covariate adjustment
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Simulation Study: K = 2

We perform interim analysis when 50% of the (total)
information is available

Total information: 648

θ = 0 (Null)
Type I ASN AAT

Original estimators θ̂tk Unadjusted 5.29% 628 2014
Standardization 5.06% 449 1542

Orthogonalized estimators θ̃tk Standardization 5.05% 449 1542

AAT: average analysis time (days); ASN: average sample number.

Note: We did a small sample size correction for standardization estimator.

Conclusion under null:
29% reduction of sample size due to covariate adjustment
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Discussion

We performed additional simulations under violation of
independent increments property:

Type I

Original estimators θ̂tk Standardization 5.37%

Orthogonalized estimators θ̃tk Standardization 5.07%

Simulations have only shown small deviations from
independent increment structure.

In practice, underlying data-generating mechanism is
unknown.

Safer to use the proposal as it guarantees to maintain the
Type I error in large samples.
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Discussion

Importantly, works for all kind of endpoints and estimands as
long as the considered estimators are consistent for θ and
asymptotically linear.
(Not necessarily covariate adjusted estimators!).
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Thank you for your attention!

Interested? https://doi.org/10.48550/arXiv.2201.12921
E-mail: kelly.vanlancker@ugent.be
The opinions in this presentation are of the author and do not necessarily

represent those of anyone else.
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Proposal: Variance

Estimate the variance of θ̃tk as

ŝe(θ̃k)
2 = (−(λ̂(k))t , 1)Ĉov

(
(θ̂tk − θ̂t1 , . . . , θ̂tk − θ̂tk−1 , θ̂tk )

t
)
(−(λ̂(k))t , 1)t .

n · ŝe(θ̃k)2 is a consistent estimate for the asymptotic
variance n · Var(θ̃tk ).

This guarantees asymptotically correct hypothesis testing
and confidence intervals.
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Algorithm for Analysis Timing: (Dis)advantages

The information-adaptive design is well suited for being
adopted for covariate adjusted estimators:

We do not have to prespecify the prognostic value of the
covariates nor other nuisance parameters.

When the estimator is more efficient than unadjusted
estimator, covariate adjustment can lead to a shorter trial due
to faster information accrual.

Administrative inconvenience: it does not give an idea to
the investigators about the necessary resources (i.e., length of
study, sample size, . . . ).

We suggest to posit some guesses on the nuisance
parameters, and
use the emerging data to evaluate whether the maximum
information can be reached with the available resources.
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