Combining Covariate Adjustment with Group Sequential and Information Adaptive Designs to Improve Randomized Trial Efficiency

Kelly Van Lancker Joint work with Michael Rosenblum and Joshua Betz

Outline

1 Background

- 2 Proposal: Combining Covariate Adjustment and GSDs
- 3 Proposal: Combining Covariate Adjustment and Information-Adaptive Designs

4 Simulation Study

Covariate Adjustment

In many clinical trials, data is collected on different patient characteristics at the time of entry

e.g., age, baseline severity and comorbidities

Covariate Adjustment

In many clinical trials, data is collected on different patient characteristics at the time of entry

• e.g., age, baseline severity and comorbidities

- Covariate adjustment is a statistical analysis method with high potential to improve precision for many of these trials.
 - Pre-planned adjustment for baseline variables when estimating average treatment effect.
 - Estimand is same as when using unadjusted estimator (e.g., difference in means).
 - Goal: avoid making any model assumptions beyond what's assumed for unadjusted estimator (robustness to model misspecification).

(e.g., Koch et al., 1998; Yang and Tsiatis, 2001; Rubin and van der Laan, 2008; Tsiatis et al., 2008; Moore and van der Laan, 2009b,a; Zhang, 2015; Jiang et al., 2018; Benkeser et al., 2020)

FDA Guidance: Example

Primary endpoint Y: binary.

FDA Guidance: Example

Primary endpoint Y: binary.

• Estimand: $\theta = E(Y|A=1) - E(Y|A=0)$.

FDA Guidance: Example

Primary endpoint Y: binary.

• Estimand: $\theta = E(Y|A=1) - E(Y|A=0)$.

Estimator: G-computation/Standardization

1 Fit logistic regression model for

$$P(Y = 1 | A, W) = logit^{-1}(\gamma_0 + \gamma_1 A + \gamma_2 W).$$

2 Compute standardized estimators for treatment specific means

Ê(Y|A = 1) = ¹/_n ∑ⁿ_{i=1} logit⁻¹(ŷ₀ + ŷ₁ + ŷ₂W_i)
Ê(Y|A = 0) = ¹/_n ∑ⁿ_{i=1} logit⁻¹(ŷ₀ + ŷ₂W_i)

3 Calculate θ̂ = Ê(Y|A = 1) - Ê(Y|A = 0)

Problem Setting

 Despite extensive literature and recommendations by regulators such as FDA and EMA, it remains highly underutilized.

Problem Setting

- Despite extensive literature and recommendations by regulators such as FDA and EMA, it remains highly underutilized.
- Problematic:
 - Resulting analyses are **inefficient** by not fully exploiting the available information in the data,
 - thereby forfeiting the opportunity to reduce the required sample size.

Potential Obstacles Leading to Underutilization

- Many covariate adjustment methods are incompatible with 'standard' group sequential designs (GSDs).
 - GSDs can reduce the length of a Phase 3 trial.
 - An obstacle for realizing precision gains from covariate adjustment as GSDs are commonly used for efficiency and ethical reasons.

Potential Obstacles Leading to Underutilization

 Many covariate adjustment methods are incompatible with 'standard' group sequential designs (GSDs).

GSDs can reduce the length of a Phase 3 trial.

- An obstacle for realizing precision gains from covariate adjustment as GSDs are commonly used for efficiency and ethical reasons.
- The uncertainty at the design stage about the amount of precision gain and corresponding sample size reduction.
 - An incorrect projection of a covariate's prognostic value risks an over- or underpowered future trial.

Outline

1 Background

2 Proposal: Combining Covariate Adjustment and GSDs

3 Proposal: Combining Covariate Adjustment and Information-Adaptive Designs

4 Simulation Study

Entail analyzing the data at K different times t_1, \ldots, t_K .

Entail analyzing the data at K different times t_1, \ldots, t_K .

Primary endpoint: binary.

• Estimand: $\theta = E(Y|A=1) - E(Y|A=0)$.

■ Estimator: Standardization/G-computation

Primary endpoint: binary.

• Estimand: $\theta = E(Y|A=1) - E(Y|A=0)$.

Estimator: Standardization/G-computation At time t_k:

- Primary endpoint: binary.
- Estimand: $\theta = E(Y|A=1) E(Y|A=0)$.
- Estimator: Standardization/G-computation At time t_k:
 - 1 Fit logistic regression model for $P(Y = 1|A, W) = logit^{-1}(\gamma_0 + \gamma_1 A + \gamma_2 W),$ in participants with complete follow up.

- Primary endpoint: binary.
- Estimand: $\theta = E(Y|A=1) E(Y|A=0)$.
- Estimator: Standardization/G-computation At time t_k:
 - 1 Fit logistic regression model for

$$P(Y = 1 | A, W) = logit^{-1}(\gamma_0 + \gamma_1 A + \gamma_2 W),$$

in participants with complete follow up.

2 Compute standardized estimators for treatment specific means

$$\widehat{E}_{t_k} (Y|A=1) = \frac{1}{n'} \sum_{i=1}^{n'} logit^{-1} (\widehat{\gamma}_0 + \widehat{\gamma}_1 + \widehat{\gamma}_2 W_i)$$

$$\widehat{E}_{t_k} (Y|A=0) = \frac{1}{n'} \sum_{i=1}^{n'} logit^{-1} (\widehat{\gamma}_0 + \widehat{\gamma}_2 W_i)$$

in all n' recruited patients.

- Primary endpoint: binary.
- Estimand: $\theta = E(Y|A=1) E(Y|A=0)$.
- Estimator: Standardization/G-computation At time t_k:
 - 1 Fit logistic regression model for

$$P(Y = 1 | A, W) = logit^{-1}(\gamma_0 + \gamma_1 A + \gamma_2 W),$$

in participants with complete follow up.

2 Compute standardized estimators for treatment specific means

 $\widehat{E}_{t_k}(Y|A=1) = \frac{1}{n'} \sum_{i=1}^{n'} logit^{-1}(\widehat{\gamma}_0 + \widehat{\gamma}_1 + \widehat{\gamma}_2 W_i)$ $\widehat{E}_{t_k}(Y|A=0) = \frac{1}{n'} \sum_{i=1}^{n'} logit^{-1}(\widehat{\gamma}_0 + \widehat{\gamma}_2 W_i)$ in all *n'* recruited patients.

3 Calculate
$$\widehat{ heta}_{t_k} = \widehat{E}_{t_k} \left(Y | A = 1 \right) - \widehat{E}_{t_k} \left(Y | A = 0 \right)$$

Entail analyzing the data at K different times t_1, \ldots, t_K .

Entail analyzing the data at K different times t_1, \ldots, t_K .

- At each analysis time t_k :
 - **D** Calculate an estimate $\hat{\theta}_{t_k}$.
 - **D** Calculate a standardized test statistic $Z_k = Z(t_k) = \frac{\hat{\theta}_{t_k} \theta_0}{\hat{se}(\hat{\theta}_t)}$.

\Box Compare the Z_k to some critical value for that analysis.

Allow to stop early for efficacy and/or futility.

Entail analyzing the data at K different times t_1, \ldots, t_K .

- At each analysis time t_k :
 - **D** Calculate an estimate $\hat{\theta}_{t_k}$.

Calculate a standardized test statistic $Z_k = Z(t_k) = \frac{\hat{\theta}_{t_k} - \theta_0}{\hat{se}(\hat{\theta}_{t_k})}$.

Compare the Z_k to some critical value for that analysis.

Allow to stop early for efficacy and/or futility.

Multiple looks at accumulating data increase type I error

Range of methods for defining the critical values for interim analyses. (Pocock, 1977; O'Brien and Fleming, 1979; Lan and DeMets, 1983)

Independent increments property: $\hat{\theta}_{t_k}$ being asymptotically independent of all previous increments $\hat{\theta}_{t_k} - \hat{\theta}_{t_{k'}}$ for all k' < k.

Independent increments property: $\hat{\theta}_{t_k}$ being asymptotically independent of all previous increments $\hat{\theta}_{t_k} - \hat{\theta}_{t_{k'}}$ for all k' < k.

■ This property holds for efficient estimators.

- ANCOVA with correctly specified model
- G-computation and TMLE (if working models are correctly specified)
- •

■ This property holds for efficient estimators.

- ANCOVA with correctly specified model
- G-computation and TMLE (if working models are correctly specified)
 ...
- Unfortunately, a sequence of RAL estimators $(\hat{\theta}_{t_1}, \dots, \hat{\theta}_{t_k})$ does not necessarily have this property.
 - e.g., G-computation and TMLE estimators when working models are misspecified
 - (e.g., Scharfstein et al., 1997; Jennison and Turnbull, 1997; Kim and Tsiatis, 2020; Rosenblum et al., 2015; Shoben and Emerson, 2014)

■ This property holds for efficient estimators.

- ANCOVA with correctly specified model
- G-computation and TMLE (if working models are correctly specified)
 ...
- Unfortunately, a sequence of RAL estimators $(\hat{\theta}_{t_1}, \dots, \hat{\theta}_{t_k})$ does not necessarily have this property.
 - e.g., G-computation and TMLE estimators when working models are misspecified
 - (e.g., Scharfstein et al., 1997; Jennison and Turnbull, 1997; Kim and Tsiatis, 2020; Rosenblum et al., 2015; Shoben and Emerson, 2014)
- Proposal: modifying any RAL estimator so that it has the independent increments property.

Proposal: Motivation

Goal: Obtain at each analysis time t_k an estimator θ_{t_k} that

- **1** is consistent for θ ,
- 2 is asymptotically linear,
- 3 is asymptotically normal,
- 4 is asymptotically as or more precise as the original estimator $\widehat{\theta}_{t_k}$, and
- 5 has the independent increments property.

Proposal: Motivation

Goal: Obtain at each analysis time t_k an estimator θ_{t_k} that

- **1** is consistent for θ ,
- is asymptotically linear,
- 3 is asymptotically normal,
- 4 is asymptotically as or more precise as the original estimator $\widehat{\theta}_{t_k}$, and
- 5 has the independent increments property.

We will focus on finding the linear combination

$$\widehat{ heta}_{t_k} - \sum_{k'=1}^{k-1} \lambda_{k'}^{(k)} (\widehat{ heta}_{t_k} - \widehat{ heta}_{t_{k'}})$$

with minimal variance.

• At
$$k = 1$$
, we let $\tilde{\theta}_{t_1} = \hat{\theta}_{t_1}$ and $\tilde{Z}_1 = Z_1 = \frac{\hat{\theta}_{t_1} - \theta_0}{\hat{s}\hat{e}(\hat{\theta}_{t_1})}$.

• At
$$k = 1$$
, we let $\tilde{\theta}_{t_1} = \hat{\theta}_{t_1}$ and $\tilde{Z}_1 = Z_1 = \frac{\hat{\theta}_{t_1} - \theta_0}{\hat{se}(\hat{\theta}_{t_1})}$.

- At each subsequent analysis $k \ge 2$:
 - **1** Calculate $\hat{\theta}_{t_k}$ and estimate the covariance matrix of $(\hat{\theta}_{t_1}, \ldots, \hat{\theta}_{t_k})$.

• At
$$k=1$$
, we let $ilde{ heta}_{t_1}=\hat{ heta}_{t_1}$ and $ilde{Z}_1=Z_1=rac{\hat{ heta}_{t_1}- heta_0}{\widehat{se}(\hat{ heta}_{t_1})}$.

- At each subsequent analysis $k \ge 2$:
 - **1** Calculate $\hat{\theta}_{t_k}$ and estimate the covariance matrix of $(\hat{\theta}_{t_1}, \dots, \hat{\theta}_{t_k})$.
 - 2 Solve

$$\left(\widehat{\lambda}_1^{(k)},\ldots,\widehat{\lambda}_{k-1}^{(k)}\right) = \arg\min_{\substack{(\lambda_1^{(k)},\ldots,\lambda_{k-1}^{(k)}) \in \mathbb{R}^{k-1}}} \widehat{Var}\{\widehat{\theta}_{t_k} - \sum_{k'=1}^{k-1} \lambda_{k'}^{(k)}(\widehat{\theta}_{t_k} - \widehat{\theta}_{t_{k'}})\},$$

• At
$$k = 1$$
, we let $\tilde{ heta}_{t_1} = \hat{ heta}_{t_1}$ and $\tilde{Z}_1 = Z_1 = rac{\hat{ heta}_{t_1} - heta_0}{\widehat{se}(\hat{ heta}_{t_1})}$.

- At each subsequent analysis $k \ge 2$:
 - **1** Calculate $\hat{\theta}_{t_k}$ and estimate the covariance matrix of $(\hat{\theta}_{t_1}, \dots, \hat{\theta}_{t_k})$.

2 Solve

$$\left(\widehat{\lambda}_{1}^{(k)},\ldots,\widehat{\lambda}_{k-1}^{(k)}\right) = \arg\min_{(\lambda_{1}^{(k)},\ldots,\lambda_{k-1}^{(k)})\in\mathbb{R}^{k-1}}\widehat{Var}\{\widehat{\theta}_{t_{k}}-\sum_{k'=1}^{k-1}\lambda_{k'}^{(k)}(\widehat{\theta}_{t_{k}}-\widehat{\theta}_{t_{k'}})\},$$

3 Calculate $\widetilde{\theta}_{t_k} = \widehat{\theta}_{t_k} - \sum_{k'=1}^{k-1} \widehat{\lambda}_{k'}^{(k)} (\widehat{\theta}_{t_k} - \widehat{\theta}_{t_{k'}})$, with $\widehat{\lambda}^{(k)} = \left\{ \widehat{V_{ar}} \left((\widehat{\theta}_{t_k} - \widehat{\theta}_{t_1}, \dots, \widehat{\theta}_{t_k} - \widehat{\theta}_{t_{k-1}})^t \right) \right\}^{-1} \cdot \widehat{Cov} \left(\widehat{\theta}_{t_k}, (\widehat{\theta}_{t_k} - \widehat{\theta}_{t_1}, \dots, \widehat{\theta}_{t_k} - \widehat{\theta}_{t_{k-1}})^t \right)$

• At
$$k = 1$$
, we let $\tilde{ heta}_{t_1} = \hat{ heta}_{t_1}$ and $\tilde{Z}_1 = Z_1 = rac{\hat{ heta}_{t_1} - heta_0}{\hat{se}(\hat{ heta}_{t_1})}$

- At each subsequent analysis $k \ge 2$:
 - **1** Calculate $\hat{\theta}_{t_k}$ and estimate the covariance matrix of $(\hat{\theta}_{t_1}, \dots, \hat{\theta}_{t_k})$.

2 Solve

$$\left(\widehat{\lambda}_{1}^{(k)},\ldots,\widehat{\lambda}_{k-1}^{(k)}\right) = \arg\min_{(\lambda_{1}^{(k)},\ldots,\lambda_{k-1}^{(k)})\in\mathbb{R}^{k-1}}\widehat{Var}\{\widehat{\theta}_{t_{k}}-\sum_{k'=1}^{k-1}\lambda_{k'}^{(k)}(\widehat{\theta}_{t_{k}}-\widehat{\theta}_{t_{k'}})\},$$

3 Calculate $\widetilde{\theta}_{t_k} = \widehat{\theta}_{t_k} - \sum_{k'=1}^{k-1} \widehat{\lambda}_{k'}^{(k)} (\widehat{\theta}_{t_k} - \widehat{\theta}_{t_{k'}})$, with $\widehat{\lambda}^{(k)} = \left\{ \widehat{V_{ar}} \left((\widehat{\theta}_{t_k} - \widehat{\theta}_{t_1}, \dots, \widehat{\theta}_{t_k} - \widehat{\theta}_{t_{k-1}})^t \right) \right\}^{-1} \cdot \widehat{Cov} \left(\widehat{\theta}_{t_k}, (\widehat{\theta}_{t_k} - \widehat{\theta}_{t_1}, \dots, \widehat{\theta}_{t_k} - \widehat{\theta}_{t_{k-1}})^t \right)$

4 Calculate
$$\tilde{Z}_k = rac{ ilde{ heta}_{t_k} - heta_0}{\widehat{se}(ilde{ heta}_{t_k})}.$$

Outline

1 Background

2 Proposal: Combining Covariate Adjustment and GSDs

3 Proposal: Combining Covariate Adjustment and Information-Adaptive Designs

4 Simulation Study

Algorithm for Analysis Timing: Design Stage

Specify the operating characteristics of the study

Algorithm for Analysis Timing: Design Stage

- Specify the operating characteristics of the study
- We compute the maximum/total information needed to preserve these operational characteristics

$$\left(\frac{z_{\alpha/2}+z_{\beta}}{\theta_A-\theta_0}
ight)^2,$$

for a fixed design (no interim analyses), and

$$\left(rac{z_{lpha/2}+z_eta}{ heta_A- heta_0}
ight)^2$$
 IF

when data is sequentially monitored with the possibility of early stopping.

(Mehta and Tsiatis, 2001)

Algorithm for Analysis Timing: Information

■ We propose to **monitor the accrued information**, $(\widehat{se}(\hat{\theta}_t))^{-2}$, through time *t*.

Algorithm for Analysis Timing: Information

- We propose to monitor the accrued information, (se(θ̂t))⁻², through time t.
- We consider a trial with an interim analysis when 50% of the information is available:

 \square We conduct the interim analysis at time t_1 when

$$(\widehat{se}(\hat{\theta}_{t_1}))^{-2} \ge 0.5 \cdot \left(\frac{z_{\alpha/2} + z_{\beta}}{\theta_A - \theta_0}\right)^2 IF.$$

 \square We conduct the final analysis at time t_2 when

$$(\widehat{se}(\widehat{ heta}_{t_2}))^{-2} \geq \left(rac{z_{lpha/2}+z_{eta}}{ heta_A- heta_0}
ight)^2 IF.$$

(Mehta and Tsiatis, 2001; Zhang, 2009)

Outline

1 Background

2 Proposal: Combining Covariate Adjustment and GSDs

3 Proposal: Combining Covariate Adjustment and Information-Adaptive Designs

4 Simulation Study

5 Discussion

MISTIE III trial (Stroke)

Functional outcome: proportion of patients who achieved a modified Rankin Scale score of 0-3 at 365 days (binary).

Estimand of interest: risk difference.

Total sample size of approximately 498 patients (in original trial):

MISTIE III trial (Stroke)

Functional outcome: proportion of patients who achieved a modified Rankin Scale score of 0-3 at 365 days (binary).

Estimand of interest: risk difference.

- Total sample size of approximately 498 patients (in original trial):
 - 1:1 randomization
 - Power of 88% to detect an average effect size of 13% at a 5% significance level
 - Success rate: 25% in standard medical care group versus 38% in MISTIE group

MISTIE III trial (Stroke)

Functional outcome: proportion of patients who achieved a modified Rankin Scale score of 0-3 at 365 days (binary).

Estimand of interest: risk difference.

- Total sample size of approximately 498 patients (in original trial):
 - 1:1 randomization
 - Power of 88% to detect an average effect size of 13% at a 5% significance level
 - Success rate: 25% in standard medical care group versus 38% in MISTIE group
- We will focus on information instead of sample size!

We perform interim analysis when 50% of the (total) information is available

Total information: 648

		$\theta = 0.13$ (Alternative)		
		Power	ASN	AAT
Original estimators $\hat{\theta}_{t_k}$	Unadjusted	88.3%	534	1566
	Standardization	87.1%	431	1299
Orthogonalized estimators $ ilde{ heta}_{t_k}$	Standardization	87.0%	431	1299

ASN: average sample number; AAT: average analysis time (days).

Note: We did a small sample size correction for standardization estimator.

Conclusion under alternative: 19% reduction of sample size due to covariate adjustment

We perform interim analysis when 50% of the (total) information is available

Total information: 648

		$\theta = 0$ (Null)		
		Type I	ASN	AAT
Original estimators $\hat{\theta}_{t_k}$	Unadjusted	5.29%	628	2014
	Standardization	5.06%	449	1542
Orthogonalized estimators $ ilde{ heta}_{t_k}$	Standardization	5.05%	449	1542

AAT: average analysis time (days); ASN: average sample number.

Note: We did a small sample size correction for standardization estimator.

Conclusion under null: 29% reduction of sample size due to covariate adjustment

Outline

1 Background

2 Proposal: Combining Covariate Adjustment and GSDs

3 Proposal: Combining Covariate Adjustment and Information-Adaptive Designs

4 Simulation Study

We performed additional simulations under violation of independent increments property:

		Type I
Original estimators $\widehat{ heta}_{t_k}$	Standardization	5.37%
Orthogonalized estimators $\widetilde{ heta}_{t_k}$	Standardization	5.07%

We performed additional simulations under violation of independent increments property:

		Type I
Original estimators $\widehat{ heta}_{t_k}$	Standardization	5.37%
Orthogonalized estimators $\widetilde{ heta}_{t_k}$	Standardization	5.07%

Simulations have only shown small deviations from independent increment structure.

Discussion

We performed additional simulations under violation of independent increments property:

		Type I
Original estimators $\widehat{ heta}_{t_k}$	Standardization	5.37%
Orthogonalized estimators $\widetilde{ heta}_{t_k}$	Standardization	5.07%

- Simulations have only shown small deviations from independent increment structure.
- In practice, underlying data-generating mechanism is unknown.

Discussion

We performed additional simulations under violation of independent increments property:

		Type I
Original estimators $\widehat{ heta}_{t_k}$	Standardization	5.37%
Orthogonalized estimators $\widetilde{ heta}_{t_k}$	Standardization	5.07%

- Simulations have only shown small deviations from independent increment structure.
- In practice, underlying data-generating mechanism is unknown.
- **Safer** to use the proposal as it guarantees to maintain the Type I error in large samples.

Importantly, works for all kind of endpoints and estimands as long as the considered estimators are consistent for θ and asymptotically linear.

(Not necessarily covariate adjusted estimators!).

Thank you for your attention!

Interested? https://doi.org/10.48550/arXiv.2201.12921 E-mail: kelly.vanlancker@ugent.be The opinions in this presentation are of the author and do not necessarily represent those of anyone else.

References I

Benkeser, D., I. Díaz, A. Luedtke, J. Segal, D. Scharfstein, and M. Rosenblum (2020). Improving precision and power in randomized trials for covid-19 treatments using covariate adjustment, for binary, ordinal, and time-to-event outcomes. *Biometrics*.

- Jennison, C. and B. W. Turnbull (1997). Group-sequential analysis incorporating covariate information. *Journal of the American Statistical Association* 92(440), 1330–1341.
- Jiang, F., L. Tian, H. Fu, T. Hasegawa, and L. J. Wei (2018). Robust alternatives to ANCOVA for estimating the treatment effect via a randomized comparative study. *Journal of the American Statistical Association 0*, 1–37.
- Kim, K. and A. A. Tsiatis (2020). Independent increments in group sequential tests: a review. SORT-Statistics and Operations Research Transactions, 223–264.

References II

Koch, G. G., C. M. Tangen, J.-W. Jung, and I. A. Amara (1998). Issues for covariance analysis of dichotomous and ordered categorical data from randomized clinical trials and non-parametric strategies for addressing them. *Stat. Med.* 17(15-16), 1863–1892.

- Lan, G. K. and D. L. DeMets (1983). Discrete sequential boundaries for clinical trials. *Biometrika* 70(3), 659–663.
- Mehta, C. R. and A. A. Tsiatis (2001). Flexible sample size considerations using information-based interim monitoring. *Drug information journal: DIJ/Drug Information Association 35*(4), 1095–1112.
- Moore, K. and M. J. van der Laan (2009a). Covariate adjustment in randomized trials with binary outcomes: Targeted maximum likelihood estimation. *Stat. Med.* 28(1), 39–64.

References III

Moore, K. L. and M. J. van der Laan (2009b). Increasing power in randomized trials with right censored outcomes through covariate adjustment. *Journal of Biopharmaceutical Statistics 19*(6), 1099–1131. PMID: 20183467.

- O'Brien, P. C. and T. R. Fleming (1979). A multiple testing procedure for clinical trials. *Biometrics*, 549–556.
- Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. *Biometrika* 64(2), 191–199.

Rosenblum, M., T. Qian, Y. Du, , and H. Qiu (2015). Adaptive enrichment designs for randomized trials with delayed endpoints, using locally efficient estimators to improve precision. Johns Hopkins University, Dept. of Biostatistics Working Papers. https://biostats.bepress.com/jhubiostat/paper275. Rubin, D. and M. van der Laan (2008). Covariate adjustment for the intention-to-treat parameter with empirical efficiency maximization. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 229, https://biostats.bepress.com/ucbbiostat/paper229.

Scharfstein, D. O., A. A. Tsiatis, and J. M. Robins (1997). Semiparametric efficiency and its implication on the design and analysis of group-sequential studies. J Am Stat Assoc 92(440), 1342–1350.

Shoben, A. B. and S. S. Emerson (2014). Violations of the independent increment assumption when using generalized estimating equation in longitudinal group sequential trials. *Statistics in medicine 33*(29), 5041–5056. Tsiatis, A. A., M. Davidian, M. Zhang, and X. Lu (2008). Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. *Statistics in medicine 27*(23), 4658–4677.

- Yang, L. and A. Tsiatis (2001). Efficiency study of estimators for a treatment effect in a pretest-posttest trial. *The American Statistician* 55(4), 314–321.
- Zhang, D. (2009). Lecture notes for statistical principles of clinical trials (modified from dr. a. tsiatis' lecture notes).
- Zhang, M. (2015, Jan). Robust methods to improve efficiency and reduce bias in estimating survival curves in randomized clinical trials. *Lifetime Data Analysis 21*(1), 119–137.

Proposal: Variance

- Estimate the variance of $\widetilde{\theta}_{t_k}$ as $\widehat{se}(\widetilde{\theta}_k)^2 = (-(\widehat{\lambda}^{(k)})^t, 1)\widehat{Cov}\left((\widehat{\theta}_{t_k} - \widehat{\theta}_{t_1}, \dots, \widehat{\theta}_{t_k} - \widehat{\theta}_{t_{k-1}}, \widehat{\theta}_{t_k})^t\right)(-(\widehat{\lambda}^{(k)})^t, 1)^t.$
- $n \cdot \widehat{se}(\widetilde{\theta}_k)^2$ is a **consistent** estimate for the asymptotic variance $n \cdot Var(\widetilde{\theta}_{t_k})$.
- This guarantees asymptotically correct hypothesis testing and confidence intervals.

Algorithm for Analysis Timing: (Dis)advantages

- The information-adaptive design is well suited for being adopted for covariate adjusted estimators:
 - We do not have to prespecify the prognostic value of the covariates nor other nuisance parameters.
 - When the estimator is more efficient than unadjusted estimator, covariate adjustment can lead to a shorter trial due to faster information accrual.

Algorithm for Analysis Timing: (Dis)advantages

- The information-adaptive design is well suited for being adopted for covariate adjusted estimators:
 - We do not have to prespecify the prognostic value of the covariates nor other nuisance parameters.
 - When the estimator is more efficient than unadjusted estimator, covariate adjustment can lead to a shorter trial due to faster information accrual.
- Administrative inconvenience: it does not give an idea to the investigators about the necessary resources (i.e., length of study, sample size, ...).
 - We suggest to posit some guesses on the nuisance parameters, and
 - use the emerging data to evaluate whether the maximum information can be reached with the available resources.