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Aims and scope

Several correlated time-to-event endpoints of interest given

» Simultaneous assessment of efficacy and toxicity

Enable adaptive design changes which can be based on all of these
endpoints

= Extending one-sample methods from Danzer et al. (2022) to a
randomized, multi-arm setting

Hp: Joint distribution of selected time-to-event endpoints in
different groups is the same



What's new?

Several time-to-event endpoints may be used to determine interim
design changes!

General concern (cf. Bauer and Posch (2004)):

Consideration of surrogate (non-primary) endpoint in interim
design changes may inflate type | error!

Existing solutions (patient-wise separation) lead to
» discarding of information or

P inevitable worst-case adjustment



Related methods

Ho: (Marginal) distribution of all selected time-to-event endpoints
in different groups is the same

Tests for multiple time-to-event endpoints in Wei and Lachin
(1984):
» Simultaneous log-rank tests for all variables

» Covariance matrix via multivariate CLT

Group-sequential extension in Lin (1991):
» Extended use of multivariate CLT for multiple time points

» component-wise "independent increments structure”

Problem: increments are not independent across components



Compromising the type | error level

Scenario similar to example in Bauer and Posch (2004) to exploit
method from Lin (1991) in adaptive design:

> Two time-to-event endpoints

» Second endpoint occurs exactly t years after occurence of first
endpoint

» Exact prediction of second component t years in advance
possible

» Adaptation at interim analysis:

» Stop recruitment if forecasted component will exceed decision
bound
» Else increase sample size

Challenge: Account for "shared information”



Notational conventions

Patients j € {1,...,n}

Treatment indicators Z; € {0,1}

States resp. (component) events j € {1,...,k}
Composite events E C {1,..., k}

Event resp. hitting times T,-E

Counting processes N,-E

Occupation indicators Y7 € {0,1}

Occupation counts Y/ =3, Y/ and Y471 =3, Z;Y/
Two notions of time:

» calendar time t

» time in trial s



From one- to two-sample methods

Patient-wise martingale

M (s) / M (u|Fi(u

as basis for one-sample test

Advantages of one-sample method:
» Multiple dependence mechanisms applicable, e.g.
» (Semi-)Markovianity of underlying multi-state model
» Copula or frailty model

» Joint reference distribution specifies neccessary correction (i.e.
N (ulFi(u)))

Impose similar assumptions on the data generating process in
two-sample case!



[[Iness-death models

A multi-state model enables a more granular description of the
course of disease

progression
death

PFS

0S

Events of clinical interest are given as "hitting times" of a set of
nodes



[[Iness-death models

A multi-state model enables a more granular description of the
course of disease

progression
death

PFS
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Markov model: A2(s, so_,1) = Aj2(5)

Semi-Markov model: A2(s,s0,1) = AL,(s — so1)



[[Iness-death models

A multi-state model enables a more granular description of the
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Semi-Markov model: A2(s,s0,1) = AL,(s — so1)



Approach from Lin (1991)

Test of the hypothesis

HO marg FPFS FPFS N FOS FOS

with the classical two-sample log-rank tests for the marginals

> UPFS(t) = 0 [5(Zi — YOZ4(t,s)/ YO(t,s))NPFS(t, ds)

(~ martingale w.r.t. filtration generated by PFS-events)

> UO(t) = 00 fo(Zi = YT (t,5)/ Y (£, 5)NDS(t, ds)
(~ martingale w.r.t. filtration generated by OS-events)

and empirical estimation of covariance from asymptotically
equivalent processes



Adjusted approach under Markov assumption

Test of the hypothesis

FPFS (O FPFS 0OS

HO,Jomt (NOte: H07joint 0 HO,marg)

with the multivariate process

. UPFS(t)
U(t) " <UOS(t)
No correction for first component neccessary, i.e.

UPFS (¢ Z/ ( . YOYZO i(z)5)> NPFS(t, ds)

Second component requires consideration of origin of transition!



Distinguishing events by transitions

progression
death

PFS

0S

Decompose Y;(t,s) = Y2(t,s) + YA(t,s) where
» YO(t,s) = 1if at calendar time t patient i is known to be
healthy at trial time s
» Yl(t,s) = 1if at calendar time t patient i is known to be ill
at trial time s



Adjusted approach under Markov assumption (contd.)

Test of the hypothesis

FPFS (O FPFS 0OS

HO,Jomt (NOte: HO,joint o HO,marg)

with the multivariate process
. UPFS(t)
U(t) -* (UOS(t)

Adjusted second component:

YZ4=10(¢, 5)
OS )
u Z/ ( s Ty sy

YZ=b(t,5)\ \os
— Liyiesoy=1} - Yl(t?S)) N;i=>(t, ds)



Asymptotics

Asymptotic equivalence:
1
Vn
where (U(t)):>0 is a martingale w.r.t. the filtration generated by
PFS- and OS-events!

U@ -0@) S0  ve>o0

Central limit theorem yields:

> L(0(0)-0()) B L (0u(t) - Uno(s)) ~ N(0.V(£) ~V(s))

P> asymptotically independent increments



Sequential testing procedure

For analysis dates 0 =: ty < t; < t» we get standardized stagewise
test statistics

R PFS R PFS _ JJPFS
Zl = Cl_l (U (tl)> resp. ZQ = C2_1 <U (t2) u (tl))

Uos(tl) UOS(tg) — Uos(tl)
which. ..
» ... asymptotically follow a bivariate standard normal
distribution

> ...are asymptotically independent

Agreement with asymptotic distribution is already observed for
small sample sizes



Stagewise p-values

Obtain stagewise p-values by taking a norm of the stagewise test
statistic:

[2-norm |Z1]3 and |Z;]3 are x3-distributed (as in Wei and
Lachin (1984))

Joint distribution of U™ (t;) and U®® (t;) Joint distribution of Zy 4 and Z; ,

U™ (1)

-30 -20 -10 ) 10 20 30 -4 2 ] 2
PFS
U (ty) Zy4

Can be combined e.g. by inverse normal method



Sample size calculation

Alternative hypotheses in terms of the transition hazards of the
model

In the case of our example:
» Does the therapy prevent from progressions?
» Is it more or less toxic and thus leading to direct deaths?
> Is it a good salvage therapy?

Use e.g. transition-wise hazard ratios 501 502 and 612

Hazard ratios imply drift function
n-d(t;6°,6%,62)

in calendar time t.



Drift under alternatives

Hazard ratios cause shift of increments of multivariate process U in
corresponding direction:

f

8'=1,

= = =
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U™ (1) -U™ (1) U™ (1)U (1)
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Adaptations in a two-stage design

First-stage p-value p; implies rejection region R»(p1) of second

stage
First stage test statistics Second stage rejection region
= 7D
= ! 4
g . = .,,:j (\k__ //
-éO -4‘0 -éO PFg 2‘0 Ab sb -éO -4‘0 -égrs 0 555 2‘0 Ab Gb
U ) U 1)-U"° ()
Separate re-assessment of hazard ratios 6%, 692 and 612

= Manipulation of external parameters of drift function yields
required conditional power



Generalized setting

Non-recurrent multi-state model with state space S = {0, ..., k}
Transition times 711} ... Tik}
Clinically relevant composite events Ej,...,Eq C {1,..., k} with
event times '
TEn = min TU}
JjEEm

Component m of test statistic

tATE™ Z=1,l
E,,, Y (t,5)\ rEn
U E / ( ]l{Yl(ts )= 1}47(@ S) Ni (t, dS)

I¢Em

In particular, we generalize
» the standard log-rank test (k =1, d =1 and E; = {1})
» the procedure of Lin (1991) in a competing risks setting



Further application

Simultaneous consideration of efficacy and toxicity

Acounting for death as a competing event

toxicity

‘ ‘ progression

‘ death

"’ toxic event
PFS

k=3 d=2 E ={2,3} (PFS), E» = {1,3} (TFS)



Beyond the Markov assumption

Cox-Markov model:

» Transition intensity may depend on additional parameters

» E.g. t{} be the time of transition into current state /
Aj(ul Fi(w)) = A (u) exp(Byt ")

» Estimate and plug in regression parameters as in log-rank test
with covariates

Semi-Markov model:

» Transition intensities given by
Aj(ulFi(u)) = Aju — ¢11)

» Requires different definition of "at risk sets” and individual
counting processes
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Estimation of covariance matrix V

Non-zero elements of covariance matrix < events occur
simultaneously

In our case: Deaths without prior illness, i.e.

\712(t)
—Cov (\; UPFS (1), \;UOS(tQ

Ly VIO 8) (1 VIR0 o
= — ]l 9 1 _ R N
n ; /[o,t] {Y0(t,s—)=1} YO(t,s) ( YO(t,5) > 72 (t, ds)

Compute lower triangular Cholesky factor C of estimate V = CCT



Simulation results: Empirical type | errrors

4 different simulation scenarios:

1.

2
3.
4

time-homogeneous Markov model

. time-inhomogeneous Markov model

Semi-Markov model

. Frailty model (baseline intensities from 2. with joint Gamma

frailty)

Combination of p-values from /%> norm via inverse normal with
equal weights and O’Brien-Fleming rejection bounds

Empirical type | errors (a = 0.05, 200,000 runs):

Scenario | n=50 | n =100 | n =200 | n =500 | n= 1000

1

2
3
4

0.0581 | 0.0538 | 0.0517 | 0.0504 0.0496
0.0592 | 0.0550 | 0.0516 | 0.0502 0.0503
0.0527 | 0.0484 | 0.0472 | 0.0456 0.0458
0.0587 | 0.0547 | 0.0527 | 0.0507 0.0500



One-sided testing

Previously shown methods can only reject Ho joint in favour of
Ei,...E Ei,...E
Hijoint: Fo 7k # Fimwk

Makes further interpretation of results difficult!

Possible choices for one-sided stagewise p-values:

» Least squares approaches (GLS or OLS, see e.g. Pocock et al.
(1987) or Lachin (2014))

» Approximate Likelihood Ratio test (see Tang et al. (1989))

» Non-inferiority for all and superiority for at least one endpoint
(see Tamhane and Logan (2004) and Perlman and Wu (2004))
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