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Aims and scope

Several correlated time-to-event endpoints of interest given

▶ Simultaneous assessment of efficacy and toxicity

Enable adaptive design changes which can be based on all of these
endpoints

⇒ Extending one-sample methods from Danzer et al. (2022) to a
randomized, multi-arm setting

H0: Joint distribution of selected time-to-event endpoints in
different groups is the same



What’s new?

Several time-to-event endpoints may be used to determine interim
design changes!

General concern (cf. Bauer and Posch (2004)):

Consideration of surrogate (non-primary) endpoint in interim
design changes may inflate type I error!

Existing solutions (patient-wise separation) lead to

▶ discarding of information or

▶ inevitable worst-case adjustment



Related methods

H0: (Marginal) distribution of all selected time-to-event endpoints
in different groups is the same

Tests for multiple time-to-event endpoints in Wei and Lachin
(1984):

▶ Simultaneous log-rank tests for all variables

▶ Covariance matrix via multivariate CLT

Group-sequential extension in Lin (1991):

▶ Extended use of multivariate CLT for multiple time points

▶ component-wise ”independent increments structure”

Problem: increments are not independent across components



Compromising the type I error level

Scenario similar to example in Bauer and Posch (2004) to exploit
method from Lin (1991) in adaptive design:

▶ Two time-to-event endpoints

▶ Second endpoint occurs exactly t years after occurence of first
endpoint

▶ Exact prediction of second component t years in advance
possible

▶ Adaptation at interim analysis:
▶ Stop recruitment if forecasted component will exceed decision

bound
▶ Else increase sample size

Challenge: Account for ”shared information”



Notational conventions

Patients i ∈ {1, . . . , n}
Treatment indicators Zi ∈ {0, 1}
States resp. (component) events j ∈ {1, . . . , k}
Composite events E ⊂ {1, . . . , k}
Event resp. hitting times TE

i

Counting processes NE
i

Occupation indicators Y j
i ∈ {0, 1}

Occupation counts Y j =
∑

i Y
j
i and Y Z=1,j =

∑
i ZiY

j
i

Two notions of time:

▶ calendar time t

▶ time in trial s



From one- to two-sample methods

Patient-wise martingale

M j
i (s) = N j

i (s)−
∫ s

0
λj(u|Fi (u))du

as basis for one-sample test

Advantages of one-sample method:
▶ Multiple dependence mechanisms applicable, e.g.

▶ (Semi-)Markovianity of underlying multi-state model
▶ Copula or frailty model

▶ Joint reference distribution specifies neccessary correction (i.e.
λj(u|Fi (u)))

Impose similar assumptions on the data generating process in
two-sample case!



Illness-death models

A multi-state model enables a more granular description of the
course of disease
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Events of clinical interest are given as ”hitting times” of a set of
nodes
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Approach from Lin (1991)

Test of the hypothesis

H0,marg : F
PFS
0 = FPFS

1 ∩ FOS
0 = FOS

1

with the classical two-sample log-rank tests for the marginals

▶ UPFS(t) :=
∑n

i=1

∫ t
0 (Zi − Y 0,Z=1(t, s)/Y 0(t, s))NPFS

i (t, ds)

(≃ martingale w.r.t. filtration generated by PFS-events)

▶ UOS(t) :=
∑n

i=1

∫ t
0 (Zi − Y Z=1(t, s)/Y (t, s))NOS

i (t, ds)

(≃ martingale w.r.t. filtration generated by OS-events)

and empirical estimation of covariance from asymptotically
equivalent processes



Adjusted approach under Markov assumption

Test of the hypothesis

H0,joint : F
PFS,OS
0 = FPFS,OS

1 (Note: H0,joint ⊃ H0,marg)

with the multivariate process

U(t) :=

(
UPFS(t)
UOS(t)

)
No correction for first component neccessary, i.e.

UPFS(t) :=
n∑

i=1

∫ t

0

(
Zi −

Y 0,Z=1(t, s)

Y 0(t, s)

)
NPFS
i (t, ds)

Second component requires consideration of origin of transition!



Distinguishing events by transitions
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Decompose Yi (t, s) = Y 0
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▶ Y 0
i (t, s) = 1 if at calendar time t patient i is known to be

healthy at trial time s

▶ Y 1
i (t, s) = 1 if at calendar time t patient i is known to be ill

at trial time s



Adjusted approach under Markov assumption (contd.)

Test of the hypothesis

H0,joint : F
PFS,OS
0 = FPFS,OS

1 (Note: H0,joint ⊃ H0,marg)

with the multivariate process

U(t) :=

(
UPFS(t)
UOS(t)

)
Adjusted second component:

UOS(t) :=
n∑

i=1

∫ t

0

(
Zi − 1{Y 0

i (t,s−)=1} ·
Y Z=1,0(t, s)

Y 0(t, s)

− 1{Y 1
i (t,s−)=1} ·

Y Z=1,1(t, s)

Y 1(t, s)

)
NOS
i (t, ds)



Asymptotics

Asymptotic equivalence:

1√
n
(U(t)− Ũ(t))

P→ 0 ∀t ≥ 0

where (Ũ(t))t≥0 is a martingale w.r.t. the filtration generated by
PFS- and OS-events!

Central limit theorem yields:

▶ 1√
n
(Ũ(t)−Ũ(s))

D→ 1√
n
(Ũ∞(t)−Ũ∞(s)) ∼ N (0,V(t)−V(s))

▶ asymptotically independent increments



Sequential testing procedure

For analysis dates 0 =: t0 < t1 < t2 we get standardized stagewise
test statistics

Z1 = Ĉ−1
1

(
UPFS(t1)
UOS(t1)

)
resp. Z2 = Ĉ−1

2

(
UPFS(t2)− UPFS(t1)
UOS(t2)− UOS(t1)

)
which. . .

▶ . . . asymptotically follow a bivariate standard normal
distribution

▶ . . . are asymptotically independent

Agreement with asymptotic distribution is already observed for
small sample sizes



Stagewise p-values

Obtain stagewise p-values by taking a norm of the stagewise test
statistic:

L2-norm |Z1|22 and |Z1|22 are χ2
2-distributed (as in Wei and

Lachin (1984))

Can be combined e.g. by inverse normal method



Sample size calculation

Alternative hypotheses in terms of the transition hazards of the
model

In the case of our example:

▶ Does the therapy prevent from progressions?

▶ Is it more or less toxic and thus leading to direct deaths?

▶ Is it a good salvage therapy?

Use e.g. transition-wise hazard ratios δ01, δ02 and δ12

Hazard ratios imply drift function

n · d(t; δ01, δ02, δ12)

in calendar time t.



Drift under alternatives

Hazard ratios cause shift of increments of multivariate process U in
corresponding direction:



Adaptations in a two-stage design

First-stage p-value p1 implies rejection region R2(p1) of second
stage

Separate re-assessment of hazard ratios δ01, δ02 and δ12

⇒ Manipulation of external parameters of drift function yields
required conditional power



Generalized setting

Non-recurrent multi-state model with state space S = {0, . . . , k}

Transition times T {1}, . . . ,T {k}

Clinically relevant composite events E1, . . . ,Ed ⊂ {1, . . . , k} with
event times

TEm := min
j∈Em

T {j}

Component m of test statistic

UEm(t) :=
n∑

i=1

∫ t∧TEm
i

0

(
Zi−

∑
l /∈Em

1{Y l
i (t,s−)=1}

Y Z=1,l(t, s)

Y l(t, s)

)
NEm
i (t, ds)

In particular, we generalize

▶ the standard log-rank test (k = 1, d = 1 and E1 = {1})
▶ the procedure of Lin (1991) in a competing risks setting



Further application

Simultaneous consideration of efficacy and toxicity

Acounting for death as a competing event
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1 toxicity

2 progression

3 death

toxic event

PFS

k = 3, d = 2, E1 = {2, 3} (PFS), E2 = {1, 3} (TFS)



Beyond the Markov assumption

Cox-Markov model:

▶ Transition intensity may depend on additional parameters

▶ E.g. t{l} be the time of transition into current state l

λj(u|Fi (u)) = λlj(u) exp(βlj t
{l})

▶ Estimate and plug in regression parameters as in log-rank test
with covariates

Semi-Markov model:

▶ Transition intensities given by

λj(u|Fi (u)) = λlj(u − t{l})

▶ Requires different definition of ”at risk sets” and individual
counting processes
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Estimation of covariance matrix V

Non-zero elements of covariance matrix ⇔ events occur
simultaneously

In our case: Deaths without prior illness, i.e.

V̂12(t)

:=Ĉov

(
1√
n
UPFS(t),

1√
n
UOS(t)

)
=
1

n

n∑
i=1

∫
[0,t]

1{Y 0
i (t,s−)=1}

Y Z=1,0(t, s)

Y 0(t, s)

(
1− Y Z=1,0(t, s)

Y 0(t, s)

)
NOS
i (t, ds)

Compute lower triangular Cholesky factor Ĉ of estimate V̂ = ĈĈT



Simulation results: Empirical type I errrors

4 different simulation scenarios:

1. time-homogeneous Markov model

2. time-inhomogeneous Markov model

3. Semi-Markov model

4. Frailty model (baseline intensities from 2. with joint Gamma
frailty)

Combination of p-values from l2 norm via inverse normal with
equal weights and O’Brien-Fleming rejection bounds

Empirical type I errors (α = 0.05, 200,000 runs):

Scenario n = 50 n = 100 n = 200 n = 500 n = 1000

1 0.0581 0.0538 0.0517 0.0504 0.0496
2 0.0592 0.0550 0.0516 0.0502 0.0503
3 0.0527 0.0484 0.0472 0.0456 0.0458
4 0.0587 0.0547 0.0527 0.0507 0.0500



One-sided testing

Previously shown methods can only reject H0,joint in favour of

H1,joint : F
E1,...,Ek
0 ̸= FE1,...,Ek

1

Makes further interpretation of results difficult!

Possible choices for one-sided stagewise p-values:

▶ Least squares approaches (GLS or OLS, see e.g. Pocock et al.
(1987) or Lachin (2014))

▶ Approximate Likelihood Ratio test (see Tang et al. (1989))

▶ Non-inferiority for all and superiority for at least one endpoint
(see Tamhane and Logan (2004) and Perlman and Wu (2004))
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