Adaptive designs for multiple time-to-event outcomes in Markovian multi-state models-

Moritz Fabian Danzer¹ Andreas Faldum¹ Rene Schmidt¹

¹Institute of Biostatistics and Clinical Research, University of Münster, Germany

20/04/2023

Project

Results of the DFG-funded project "Design and analysis of adaptive-sequential clinical trials with multiple, correlated time-to-event endpoints"

- Project leader: Rene Schmidt
- Location: Institute of Biostatistics and Clinical Research, University of Münster
- Period: 04/2019 03/2022 (extended until 09/2025)
- Grant number: 413730122

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Aims and scope

Several correlated time-to-event endpoints of interest given

Simultaneous assessment of efficacy and toxicity

Enable $\underline{adaptive \ design \ changes}$ which can be based on all of these endpoints

 \Rightarrow Extending one-sample methods from Danzer et al. (2022) to a randomized, multi-arm setting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 H_0 : Joint distribution of selected time-to-event endpoints in different groups is the same

What's new?

Several time-to-event endpoints may be used to determine interim design changes!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General concern (cf. Bauer and Posch (2004)):

Consideration of surrogate (non-primary) endpoint in interim design changes may inflate type I error!

Existing solutions (patient-wise separation) lead to

- discarding of information or
- inevitable worst-case adjustment

Related methods

 H_0 : (Marginal) distribution of all selected time-to-event endpoints in different groups is the same

Tests for multiple time-to-event endpoints in Wei and Lachin (1984):

- Simultaneous log-rank tests for all variables
- Covariance matrix via multivariate CLT

Group-sequential extension in Lin (1991):

Extended use of multivariate CLT for multiple time points

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

component-wise "independent increments structure"

<u>Problem</u>: increments are not independent across components

Compromising the type I error level

Scenario similar to example in Bauer and Posch (2004) to exploit method from Lin (1991) in adaptive design:

- Two time-to-event endpoints
- Second endpoint occurs exactly t years after occurence of first endpoint
- Exact prediction of second component t years in advance possible
- Adaptation at interim analysis:
 - Stop recruitment if forecasted component will exceed decision bound

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Else increase sample size

Challenge: Account for "shared information"

Notational conventions

Patients $i \in \{1, \ldots, n\}$ Treatment indicators $Z_i \in \{0, 1\}$ States resp. (component) events $j \in \{1, \ldots, k\}$ Composite events $E \subset \{1, \ldots, k\}$ Event resp. hitting times T_i^E Counting processes N_i^E Occupation indicators $Y_i^j \in \{0, 1\}$ Occupation counts $Y^{j} = \sum_{i} Y^{j}_{i}$ and $Y^{Z=1,j} = \sum_{i} Z_{i} Y^{j}_{i}$ Two notions of time: calendar time t

time in trial s

From one- to two-sample methods

Patient-wise martingale

$$M_i^j(s) = N_i^j(s) - \int_0^s \lambda^j(u|\mathcal{F}_i(u)) du$$

as basis for one-sample test

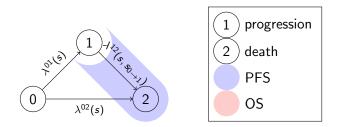
Advantages of one-sample method:

- Multiple dependence mechanisms applicable, e.g.
 - (Semi-)Markovianity of underlying multi-state model
 - Copula or frailty model
- Joint reference distribution specifies neccessary correction (i.e. λ^j(u|F_i(u)))

Impose similar assumptions on the data generating process in two-sample case!

Illness-death models

A multi-state model enables a more granular description of the course of disease

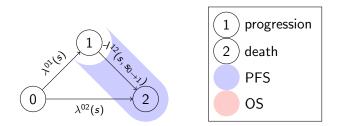


Events of clinical interest are given as "hitting times" of a set of nodes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Illness-death models

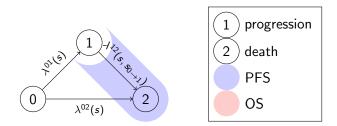
A multi-state model enables a more granular description of the course of disease



 $\begin{array}{l} \mathsf{Markov model:} \ \lambda^{12}(s,s_{0\rightarrow1}) = \lambda^{12}_M(s) \\ \mathsf{Semi-Markov model:} \ \lambda^{12}(s,s_{0\rightarrow1}) = \lambda^{12}_{SM}(s-s_{0\rightarrow1}) \end{array}$

Illness-death models

A multi-state model enables a more granular description of the course of disease



Markov model: $\lambda^{12}(s, s_{0 \to 1}) = \lambda_M^{12}(s)$ Semi-Markov model: $\lambda^{12}(s, s_{0 \to 1}) = \lambda_{SM}^{12}(s - s_{0 \to 1})$ Approach from Lin (1991)

Test of the hypothesis

$$H_{0,\text{marg}}: F_0^{\text{PFS}} = F_1^{\text{PFS}} \cap F_0^{\text{OS}} = F_1^{\text{OS}}$$

with the classical two-sample log-rank tests for the marginals

►
$$U^{\text{PFS}}(t) \coloneqq \sum_{i=1}^{n} \int_{0}^{t} (Z_{i} - Y^{0,Z=1}(t,s)/Y^{0}(t,s)) N_{i}^{\text{PFS}}(t,ds)$$

(\simeq martingale w.r.t. filtration generated by *PFS*-events)

►
$$U^{OS}(t) := \sum_{i=1}^{n} \int_{0}^{t} (Z_{i} - Y^{Z=1}(t, s) / Y(t, s)) N_{i}^{OS}(t, ds)$$

(\simeq martingale w.r.t. filtration generated by *OS*-events)
and empirical estimation of covariance from asymptotically
equivalent processes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Adjusted approach under Markov assumption

Test of the hypothesis

$$H_{0,\text{joint}} \colon F_0^{\text{PFS,OS}} = F_1^{\text{PFS,OS}} \qquad (\text{Note: } H_{0,\text{joint}} \supset H_{0,\text{marg}})$$

with the multivariate process

$$\mathbf{U}(t) \coloneqq \begin{pmatrix} U^{\mathsf{PFS}}(t) \\ U^{\mathsf{OS}}(t) \end{pmatrix}$$

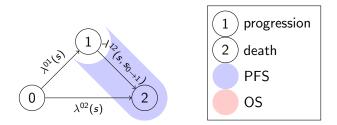
No correction for first component neccessary, i.e.

$$U^{\mathsf{PFS}}(t) \coloneqq \sum_{i=1}^n \int_0^t \left(Z_i - \frac{Y^{0,Z=1}(t,s)}{Y^0(t,s)} \right) N_i^{\mathsf{PFS}}(t,ds)$$

Second component requires consideration of origin of transition!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Distinguishing events by transitions



Decompose $Y_i(t,s) = Y_i^0(t,s) + Y_i^1(t,s)$ where

- Y_i⁰(t, s) = 1 if at calendar time t patient i is known to be healthy at trial time s
- Y¹_i(t, s) = 1 if at calendar time t patient i is known to be ill at trial time s

Adjusted approach under Markov assumption (contd.)

Test of the hypothesis

$$egin{array}{ll} \mathcal{H}_{0, ext{joint}}\colon \mathcal{F}_{0}^{ ext{PFS,OS}}=\mathcal{F}_{1}^{ ext{PFS,OS}} & (ext{Note:}\;\mathcal{H}_{0, ext{joint}}\supset\mathcal{H}_{0, ext{marg}}) \end{array}$$

with the multivariate process

$$\mathbf{U}(t)\coloneqq egin{pmatrix} U^{\mathsf{PFS}}(t)\ U^{\mathsf{OS}}(t) \end{pmatrix}$$

Adjusted second component:

$$U^{OS}(t) \coloneqq \sum_{i=1}^{n} \int_{0}^{t} \left(Z_{i} - \mathbb{1}_{\{Y_{i}^{0}(t,s-)=1\}} \cdot \frac{Y^{Z=1,0}(t,s)}{Y^{0}(t,s)} - \mathbb{1}_{\{Y_{i}^{1}(t,s-)=1\}} \cdot \frac{Y^{Z=1,1}(t,s)}{Y^{1}(t,s)} \right) N_{i}^{OS}(t,ds)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Asymptotics

Asymptotic equivalence:

$$rac{1}{\sqrt{n}}(\mathbf{U}(t)- ilde{\mathbf{U}}(t))\stackrel{\mathbb{P}}{
ightarrow} 0 \qquad orall t\geq 0$$

where $(\tilde{\mathbf{U}}(t))_{t\geq 0}$ is a martingale w.r.t. the filtration generated by PFS- and OS-events!

Central limit theorem yields:

$$\blacktriangleright \ \frac{1}{\sqrt{n}} (\tilde{\mathbf{U}}(t) - \tilde{\mathbf{U}}(s)) \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{n}} (\tilde{\mathbf{U}}_{\infty}(t) - \tilde{\mathbf{U}}_{\infty}(s)) \sim \mathcal{N}(0, \mathbf{V}(t) - \mathbf{V}(s))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

asymptotically independent increments

Sequential testing procedure

For analysis dates $0 \eqqcolon t_0 < t_1 < t_2$ we get standardized stagewise test statistics

$$\mathbf{Z}_1 = \hat{\mathbf{C}}_1^{-1} \begin{pmatrix} U^{\mathsf{PFS}}(t_1) \\ U^{\mathsf{OS}}(t_1) \end{pmatrix} \text{ resp. } \mathbf{Z}_2 = \hat{\mathbf{C}}_2^{-1} \begin{pmatrix} U^{\mathsf{PFS}}(t_2) - U^{\mathsf{PFS}}(t_1) \\ U^{\mathsf{OS}}(t_2) - U^{\mathsf{OS}}(t_1) \end{pmatrix}$$

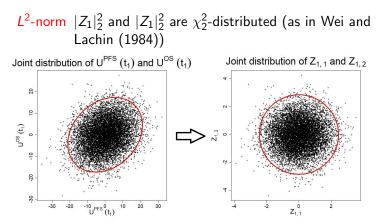
which...

- ... asymptotically follow a bivariate standard normal distribution
- ... are asymptotically independent

Agreement with asymptotic distribution is already observed for small sample sizes

Stagewise p-values

Obtain stagewise p-values by taking a norm of the stagewise test statistic:



Can be combined e.g. by inverse normal method

Sample size calculation

Alternative hypotheses in terms of the transition hazards of the model

In the case of our example:

- Does the therapy prevent from progressions?
- Is it more or less toxic and thus leading to direct deaths?

Is it a good salvage therapy?

Use e.g. transition-wise hazard ratios δ^{01} , δ^{02} and δ^{12}

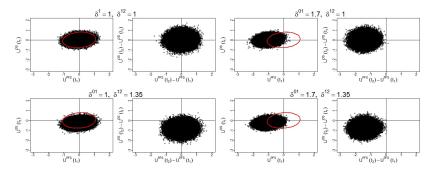
Hazard ratios imply drift function

$$n \cdot d(t; \delta^{01}, \delta^{02}, \delta^{12})$$

in calendar time t.

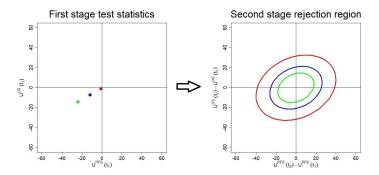
Drift under alternatives

Hazard ratios cause shift of increments of multivariate process ${\bf U}$ in corresponding direction:



Adaptations in a two-stage design

First-stage p-value p_1 implies rejection region $\mathcal{R}_2(p_1)$ of second stage



Separate re-assessment of hazard ratios δ^{01} , δ^{02} and δ^{12} \Rightarrow Manipulation of external parameters of drift function yields required conditional power

Generalized setting

Non-recurrent multi-state model with state space $S = \{0, ..., k\}$ Transition times $T^{\{1\}}, ..., T^{\{k\}}$

Clinically relevant composite events $E_1, \ldots, E_d \subset \{1, \ldots, k\}$ with event times

$$T^{E_m} \coloneqq \min_{j \in E_m} T^{\{j\}}$$

Component *m* of test statistic

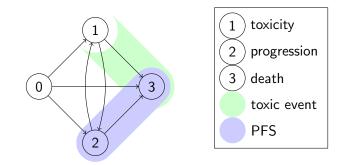
$$U^{E_m}(t) := \sum_{i=1}^n \int_0^{t \wedge T_i^{E_m}} \left(Z_i - \sum_{l \notin E_m} \mathbb{1}_{\{Y_i^l(t,s-)=1\}} \frac{Y^{Z=1,l}(t,s)}{Y^l(t,s)} \right) N_i^{E_m}(t,ds)$$

In particular, we generalize

- the standard log-rank test $(k = 1, d = 1 \text{ and } E_1 = \{1\})$
- the procedure of Lin (1991) in a competing risks setting

Further application

Simultaneous consideration of efficacy and toxicity Acounting for death as a competing event



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $k = 3, d = 2, E_1 = \{2,3\}$ (PFS), $E_2 = \{1,3\}$ (TFS)

Beyond the Markov assumption

Cox-Markov model:

Transition intensity may depend on additional parameters

• E.g. $t^{\{l\}}$ be the time of transition into current state l

$$\lambda_j(u|\mathcal{F}_i(u)) = \lambda_{lj}(u) \exp(\beta_{lj} t^{\{l\}})$$

 Estimate and plug in regression parameters as in log-rank test with covariates

Semi-Markov model:

Transition intensities given by

$$\lambda_j(u|\mathcal{F}_i(u)) = \lambda_{lj}(u - t^{\{l\}})$$

Requires different definition of "at risk sets" and individual counting processes

References I

- Bauer P and Posch M (2004). Letter to the editor: Modification of the sample size and the schedule of interim analyses in survival trials based on data inspections. *Statistics in Medicine* **23**(8), 1333–1335.
- Danzer MF, Terzer T, Berthold F, Faldum A and Schmidt R (2022). Confirmatory adaptive group sequential designs for single-arm phase II studies with multiple time-to-event endpoints. *Biometrical Journal* **64**(2), 312–342.
- Lachin JM (2014). Applications of the Wei-Lachin Multivariate One-Sided Test for Multiple Outcomes on Possibly Different Scales. *PLOS ONE* **9**(10), e108784.
- Lin DY (1991). Nonparametric sequential testing in clinical trials with incomplete multivariate observations. *Biometrika* **78**(1), 123–131.
- Perlman MD and Wu L (2004). A note on one-sided tests with multiple endpoints. *Biometrics* **60**(1), 276–280.
- Pocock SJ, Geller NL, Tsiatis AA (1987). The analysis of multiple endpoints in clinical trials. *Biometrics* **43**(3), 487–498.
- Tamhane AJ and Logan BR (2004). A superiority-equivalence approach to one-sided tests on multiple endpoints in clinical trials. *Biometrika* **91**(3), 715–727.

References II

- Tang DI, Gnecco C, Geller NL (1989) An approximate likelihood ratio test for a normal mean vector with nonnegative components with application to clinical trials. *Biometrika* 76(3), 577–583.
- Wei LJ and Lachin JM (1984). Two-Sample Asymptotically Distribution-Free Tests for Incomplete Multivariate Observations. *Journal of the American Statistical Association* **79**(387), 653–661.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Estimation of covariance matrix V

Non-zero elements of covariance matrix \Leftrightarrow events occur simultaneously

In our case: Deaths without prior illness, i.e.

$$\begin{split} &\hat{V}_{12}(t) \\ &\coloneqq \widehat{\mathsf{Cov}}\left(\frac{1}{\sqrt{n}}U^{\mathsf{PFS}}(t), \frac{1}{\sqrt{n}}U^{\mathsf{OS}}(t)\right) \\ &= \frac{1}{n}\sum_{i=1}^{n}\int_{[0,t]}\mathbbm{1}_{\{Y_{i}^{0}(t,s-)=1\}}\frac{Y^{Z=1,0}(t,s)}{Y^{0}(t,s)}\left(1-\frac{Y^{Z=1,0}(t,s)}{Y^{0}(t,s)}\right)N_{i}^{\mathsf{OS}}(t,ds) \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Compute lower triangular Cholesky factor $\hat{\bm{C}}$ of estimate $\hat{\bm{V}}=\hat{\bm{C}}\hat{\bm{C}}^{\mathcal{T}}$

Simulation results: Empirical type I errrors

- 4 different simulation scenarios:
 - 1. time-homogeneous Markov model
 - 2. time-inhomogeneous Markov model
 - 3. Semi-Markov model
 - 4. Frailty model (baseline intensities from 2. with joint Gamma frailty)

Combination of p-values from l^2 norm via inverse normal with equal weights and O'Brien-Fleming rejection bounds

Empirical type I errors ($\alpha = 0.05$, 200,000 runs):

Scenario	<i>n</i> = 50	n = 100	<i>n</i> = 200	<i>n</i> = 500	n = 1000
1	0.0581	0.0538	0.0517	0.0504	0.0496
2	0.0592	0.0550	0.0516	0.0502	0.0503
3	0.0527	0.0484	0.0472	0.0456	0.0458
4	0.0587	0.0547	0.0527	0.0507	0.0500

One-sided testing

Previously shown methods can only reject $H_{0,joint}$ in favour of

$$H_{1,\text{joint}}: F_0^{E_1,...,E_k} \neq F_1^{E_1,...,E_k}$$

Makes further interpretation of results difficult!

Possible choices for one-sided stagewise *p*-values:

- Least squares approaches (GLS or OLS, see e.g. Pocock et al. (1987) or Lachin (2014))
- Approximate Likelihood Ratio test (see Tang et al. (1989))
- Non-inferiority for all and superiority for at least one endpoint (see Tamhane and Logan (2004) and Perlman and Wu (2004))