Sequential Alternatives to the Two-Trials Rule

Leonhard Held

Workshop on Adaptive Designs and Multiple Testing Procedures

Basel, April 20, 2023

- FDA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- FDA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- Usually implemented requiring one-sided $p \le \alpha = 0.025$ in two independent studies.

- FDA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- Usually implemented requiring one-sided $p \le \alpha = 0.025$ in two independent studies.
- \rightarrow Overall T1E rate is $\alpha_{\text{overall}} = \alpha^2 = 0.025^2 = 0.000625$.

- FDA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- Usually implemented requiring one-sided $p \le \alpha = 0.025$ in two independent studies.
- \rightarrow Overall T1E rate is $\alpha_{\text{overall}} = \alpha^2 = 0.025^2 = 0.000625$.
- Nice review in Kennedy-Shaffer (2017)

Therapeutic Innovation & Regulatory Science https://doi.org/10.1007/s43441-022-00471-4

ORIGINAL RESEARCH

A Generalization of the Two Trials Paradigm

Gerd K. Rosenkranz¹0

Therapeutic Innovation & Regulatory Science https://doi.org/10.1007/s43441-022-00471-4

ORIGINAL RESEARCH

A Generalization of the Two Trials Paradigm

Gerd K. Rosenkranz¹0

- Requiring at least 2 out of n > 2 trials to be significant at 0.025 is too lax.

Therapeutic Innovation & Regulatory Science https://doi.org/10.1007/s43441-022-00471-4

ORIGINAL RESEARCH

A Generalization of the Two Trials Paradigm

Gerd K. Rosenkranz¹0

- Requiring at least 2 out of n > 2 trials to be significant at 0.025 is too lax.
- Requiring all *n* trials to be significant at 0.025 is too stringent.

Therapeutic Innovation & Regulatory Science https://doi.org/10.1007/s43441-022-00471-4

ORIGINAL RESEARCH

A Generalization of the Two Trials Paradigm

Gerd K. Rosenkranz¹

- Requiring at least 2 out of n > 2 trials to be significant at 0.025 is too lax.
- Requiring all *n* trials to be significant at 0.025 is too stringent.
- Rosenkranz (2023) addresses the problem by requiring that

"the type-I error rate of any procedure involving more than two trials shall equal the type-I error rate from the two trials rule."

Therapeutic Innovation & Regulatory Science https://doi.org/10.1007/s43441-022-00471-4

ORIGINAL RESEARCH

A Generalization of the Two Trials Paradigm

Gerd K. Rosenkranz¹

- Requiring at least 2 out of n > 2 trials to be significant at 0.025 is too lax.
- Requiring all *n* trials to be significant at 0.025 is too stringent.
- Rosenkranz (2023) addresses the problem by requiring that

"the type-I error rate of any procedure involving more than two trials shall equal the type-I error rate from the two trials rule."

 \rightarrow "2-of-3 rule" with adjusted significance level $\alpha_* = 0.0145$

The Harmonic Mean χ^2 Test

Appl. Statist. (2020)

The harmonic mean χ^2 test to substantiate scientific findings

Leonhard Held University of Zurich, Switzerland

The Harmonic Mean χ^2 Test

Appl. Statist. (2020)

The harmonic mean $\chi^2\text{-test}$ to substantiate scientific findings

Leonhard Held University of Zurich, Switzerland

- Compute the harmonic mean Z_H^2 of squared Z-values Z_1^2, \ldots, Z_n^2 to obtain

$$X_n^2 = n \cdot Z_H^2 = \frac{n^2}{\sum_{i=1}^n 1/Z_i^2} \stackrel{H_0}{\sim} \chi^2(1 \text{ df})$$

The Harmonic Mean χ^2 Test

Appl. Statist. (2020)

The harmonic mean $\chi^2\text{-test}$ to substantiate scientific findings

- Compute the harmonic mean Z_H^2 of squared Z-values Z_1^2, \ldots, Z_n^2 to obtain

$$X_n^2 = n \cdot Z_H^2 = \frac{n^2}{\sum_{i=1}^n 1/Z_i^2} \stackrel{H_0}{\sim} \chi^2(1 \text{ df})$$

- Exact overall T1E control at level $\alpha_{overall}$ is obtained with critical value c_n .

Necessary Success Bounds on *p*-Values

The success criterion
$$X_n^2 \ge c_n \iff T_n = \sum_{i=1}^n 1/Z_i^2 \le d_n = \frac{n^2}{c_n}$$

requires $1/Z_i^2 \le d_n$, which implies necessary success bounds on all *p*-values:

	bound on <i>p</i> -value				
$\alpha_{ m overall}$	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4		
0.025 ²	0.065	0.17	0.26		

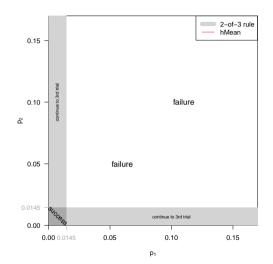
Formalizes the meaning of

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness"

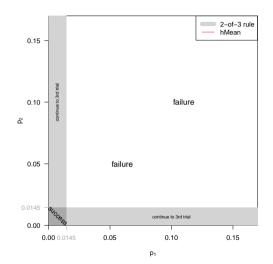
No such bounds exist for Fisher, Stouffer, 2-of-3 rule

Project Power for 2 Trials

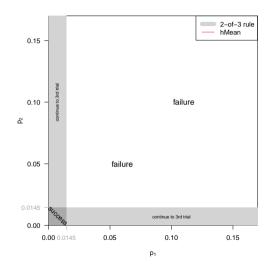
- Of central interest is the overall project power.
- Can be easily calculated through Monte Carlo simulation:


	Project power (%)			
Trial power	two-trials rule	e harmonic		
80	64	71		
90	81	87		

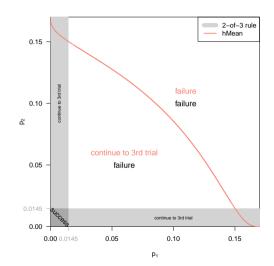
- 2-of-3 rule
 - Cannot stop after trial 1

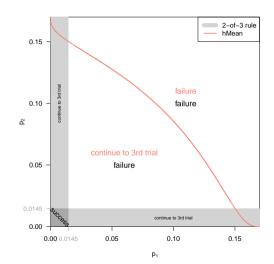

- 2-of-3 rule
 - Cannot stop after trial 1
 - $\rightarrow\,$ Trial 1 and 2 could be run in parallel

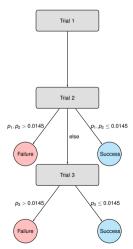
- 2-of-3 rule
 - Cannot stop after trial 1
 - $\rightarrow\,$ Trial 1 and 2 could be run in parallel
 - Can stop after trial 2 for both failure and success

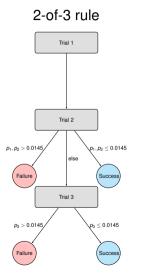


- 2-of-3 rule
 - Cannot stop after trial 1
 - $\rightarrow\,$ Trial 1 and 2 could be run in parallel
 - Can stop after trial 2 for both failure and success

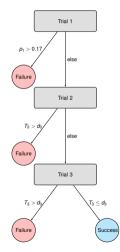

- Failure if
$$p_1, p_2 = 0.02$$
 (!)


- 2-of-3 rule
 - Cannot stop after trial 1
 - \rightarrow Trial 1 and 2 could be run in parallel
 - Can stop after trial 2 for both failure and success
 - Failure if $p_1, p_2 = 0.02$ (!)
- Harmonic mean test
 - Can stop after trial 1 for failure (if p₁ > 0.17)

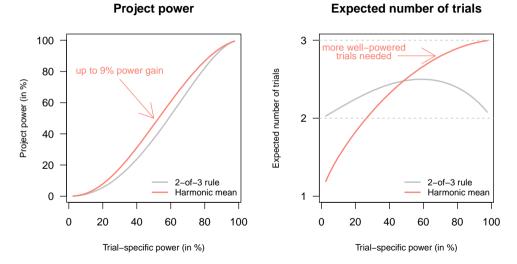

- 2-of-3 rule
 - Cannot stop after trial 1
 - \rightarrow Trial 1 and 2 could be run in parallel
 - Can stop after trial 2 for both failure and success
 - Failure if $p_1, p_2 = 0.02$ (!)
- Harmonic mean test
 - Can stop after trial 1 for failure (if p₁ > 0.17)
 - Can stop after trial 2 for failure



- 2-of-3 rule
 - Cannot stop after trial 1
 - \rightarrow Trial 1 and 2 could be run in parallel
 - Can stop after trial 2 for both failure and success
 - Failure if $p_1, p_2 = 0.02$ (!)
- Harmonic mean test
 - Can stop after trial 1 for failure (if p₁ > 0.17)
 - Can stop after trial 2 for failure
 - Success is only possible with 3 trials



2-of-3 rule

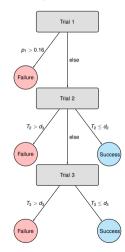


Harmonic mean

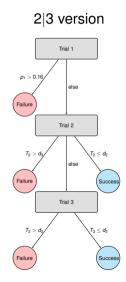
Project Power and Expected Number of Trials

The Sequential Harmonic Mean Test

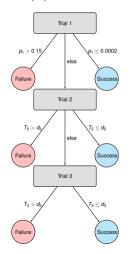
- Test for success after 2nd and 3rd trial at level $\alpha_{\rm adjusted}.$
- Exact T1E control at level $\alpha_{overall}$ requires multiplicity adjustments based on


$$T_3 = \underbrace{\frac{1/Z_1^2 + 1/Z_2^2}}_{=T_2 \sim IG(1/2,2)} + \underbrace{\frac{1/Z_3^2}}_{\sim IG(1/2,1/2)}$$

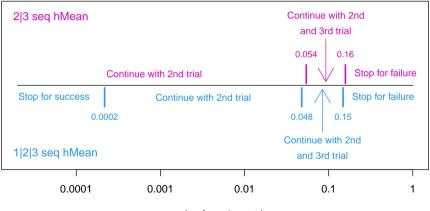
- Can be extended to test also after 1st trial.
- \rightarrow Adjusted level and thresholds d_i for $\alpha_{\text{overall}} = 0.025^2$:


		threshold		
	$lpha_{ m adjusted}$	d_1	d_2	d_3
hMean	0.025 ²			1.14
2 3 seq hMean	0.018 ²		0.39	1.00
1 2 3 seq hMean	0.015 ²	0.081	0.36	0.92

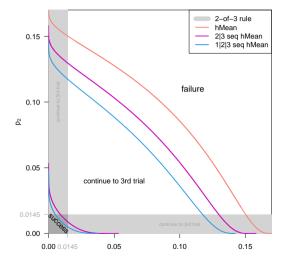
The Sequential Harmonic Mean Test


2|3 version

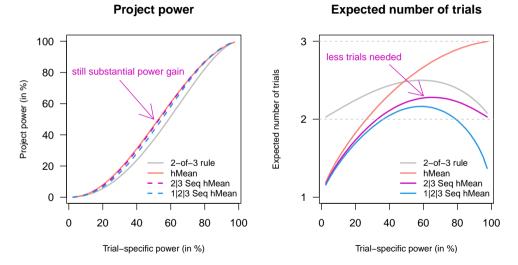
The Sequential Harmonic Mean Test



1|2|3 version


Possible Decisions after Trial 1

Trials 2 and 3 can sometimes be conducted in parallel:



p-value from 1st study

Possible Decisions after Trial 2

Project Power and Expected Number of Trials

Page 14

The harmonic mean χ^2 test

- requires each trial to be convincing on its own

- requires each trial to be convincing on its own
- allows for stopping after the 1st trial

- requires each trial to be convincing on its own
- allows for stopping after the 1st trial
- leads to more appropriate inferences than the 2-of-3 rule

- requires each trial to be convincing on its own
- allows for stopping after the 1st trial
- leads to more appropriate inferences than the 2-of-3 rule
- can be applied sequentially to stop for success after the 2nd or 1st trial

- requires each trial to be convincing on its own
- allows for stopping after the 1st trial
- leads to more appropriate inferences than the 2-of-3 rule
- can be applied sequentially to stop for success after the 2nd or 1st trial
- has increased project power and requires less trials

References

- Held, L. (2020). The harmonic mean χ^2 -test to substantiate scientific findings. Journal of the Royal Statistical Society: Series C (Applied Statistics), 69(3):697–708.
- Kennedy-Shaffer, L. (2017). When the alpha is the omega: *P*-values, "substantial evidence," and the 0.05 standard at FDA. *Food and Drug Law Journal*, 72(4):595–635.
- Rosenkranz, G. K. (2023). A generalization of the two trials paradigm. *Therapeutic Innovation & Regulatory Science*, 57:316–320.