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Benefiting from the past?

New treatment: How can data already collected be utilized to “optimize” the trial?

• For test decision?

• Use of nonconcurrent controls (Bofill et al., 22)

• Modification of testing strategy, e.g. outcome of former treatments influences significance 

boundaries, e.g., online control of FWER, FDR (Javanmard et al. 15, Tian et al. 21)
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How is this different to historical data?

- Same definition of endpoints

- Same centers and study population

- Same inclusion and exclusion criteria

- ....



What about sample size calculation for new treatment 
arms in platform trials?
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Sample size calculation with an oracle
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Treatment 2

New treatment every 30 controls 

(1:1 allocations)

...

Calendar Time
• N(0,1) data, for alternatives N(Delta=0.5,1) 

• T-test

• Concurrent controls for test decision

• a=0.025 (one-sided) 

• Level-a tests (e.g., Collignon et al., 20)

• Target average power of 0.8
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PatIf an oracle tells us the true parameters: Sample size of each treatment arm: n=64ent care
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Naive strategy: Estimate Delta from the observed effect of 
last treatment and all controls

• Minimum Delta=0.25 (i.e., maximum sample size of 250). Set sd=1

• Simulated sample sizes for treatments 1 to 10:
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Naive strategy: Estimate Delta from the observed effect of 
last treatment and all controls

• Minimum Delta=0.25. Set sd=1

• Simulated sample sizes for treatments 1 to 10:

Why should the effect size of interest 

depend on the (random) outcome of 

the former treatment?

Set Delta to 

clinical relevant effect size = 0.5.



Estimate standard deviation

• Set Delta=0.5 (clinical relevant effect size), true sd=1

• Estimate standard deviation from all so far observed controls

• Range of sample sizes decreases with time

• The more data we observe, the more precise is the sample size calculation 
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m1=10 m1=1m1=5



False assumption -
estimate standard deviation from observed controls 
• Assume sd=1 but true sd=1.4

Sample size estimation in platform trialsc

m1=5

Average power for 

the scenarios = 0.77
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m1=5

Average power for 

the scenarios = 0.77

What happens if we start a new treatment after every 5 controls (instead of 30)?

Average power for 

the scenarios = 0.74



False assumption -
estimate standard deviation from observed controls 
• Assume sd=1 but true sd=1.4

Sample size estimation in platform trialsc

m1=5

What happens if we start a new treatment after every 5 controls (instead of 30)?

m1=5



Heteroscedasticity: Treatment arms with higher variation 

• Controls: sd=1, Treatments: sd=1.2
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From controls

From controls and 

treatments

Estimate sd from data
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• Controls: sd=1, Treatments: sd=1.2
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For early treatments, broad CI due to smaller 

number of previous observations.
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• Controls: sd=1, Treatments: sd=1.2
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From controls

From controls and 

treatments
From controls

From controls and 

treatments

Estimate sd from data Estimate sd with CI

Wassmer and Kieser, 96: Use upper CI of sd from pilot sample

For early treatments, broad CI due to smaller 

number of previous observations.



False Discovery Rate (FDR) control

• FDR control for platform trials (e.g, Robertson et al 2019, 2022, Zehetmayer et al. 2022)

• R: number of rejected hypotheses, V: number of wrongly rejected hypotheses

• However, conventional methods for FDR control assume that

• Number of hypothesis tests is fixed

• All p-values are available at time of test decison. 

• Online control of the FDR

FDR=E(
𝑉

max(𝑅,1)
)
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Online control of the FDR

• Predefined order of hypotheses

• At each step a decision is made if the current Hi is rejected based on previous decisions.

• E.g., Javanmard and Montanari,15, 18

LOND procedure for online FDR control

• Decreasing significance levels a1, a2,... are allocated to sequence of null hypotheses H1, H2,... 

• In case of previous rejections, the significance levels are increased.
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Oracle scenario with online FDR control

Sample size estimation in platform trials

• True sd=1

• Allow for a total of 100 treatment arms

• Remember: For level-a tests, for each treatment n=64 patients 

m1=10



Oracle scenario with online FDR control

Sample size estimation in platform trials

• True sd=1

• Allow for a total of 100 treatment arms

• Remember: For level-a tests, for each treatment n=64 patients

• Sample sizes depend on m1 and the position of the treatment.

m1=10 m1=5 m1=1



Adaptive design

• In Zehetmayer et al., 22 we considered a group-sequential LOND procedure (gsLOND) with 

the option to stop in the interim analysis. 

• For gsLOND the significance level ai might be increased between interim and final analysis. 

• Consequently also group-sequential boundaries have to adjusted.
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NOW: In interim analysis: 

- Stopping for futilty

- Efficacy stopping

- Update ai

- Sample size reassessment with                          

aiconditional error function for a  

aiconditional power of 0.8
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Benefiting from the past – calculation of conditional power
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Adaptive design with stopping for futility at a1=0.5

Sample size estimation in platform trials

m1=10 m1=5 m1=1

Level-a tests

FDR

• O‘Brien-Fleming design for inverse normal method, minimum sample size in stage 2 is 10.

• Estimate sd for sample size reassessment from all controls and interim data



Summary
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• Benefiting from the past: The structure of platform trials helps to estimate sample sizes as past 

observations can be used in the planning phase.

• Overlap of treatments has a high influence.

• For very early treatments, planning is more difficult. 

• Sample size reassessment might be a good choice.

• Extension: reduction of influence of data from earlier treatments

Sample size estimation in platform trials
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